Что значит полярность прямая и обратная


Полярность аккумулятора – обратная или прямая. Как определить полярность?

Аккумулятор (АКБ) – основной источник электрического тока в автомобиле, основными характеристиками которого являются номинальная емкость и ток холодного запуска, подаваемый на стартер. Однако есть еще одна характеристика, которая очень важна при выборе модели аккумуляторной батареи  - его полярность, т.е. расположение внешних токовыводов (токовыводящих элементов «+» и «-») на лицевых панелях аккумулятора.

Дело в том, что современный модельный ряд аккумуляторов представлен моделями отечественного и европейского производства и двумя основными вариантами полярности – прямой и обратной (прочие варианты встречаются крайне редко и в РФ не используются). В чем различие между ними, и почему важно выбирать АКБ с правильной полярностью, соответствующей техническим требованиям автомобиля?

Следует понимать, что разная полярность аккумуляторов никак не отражается на их производительности – батареи с прямой и обратной полярностью работают совершенно идентично. Разница только в геометрии токовыводов (лево-право) и ограничениях по применению - аккумуляторы с прямой полярностью используются в автомобилях отечественного производства, а обратная полярность характерна для батарей европейских и американских авто.  Эти различия следует обязательно учитывать при подключении АКБ к клеммам стартера на автомобиле.

Прямая полярность

Российская (прямая) полярность аккумулятора маркируется цифрой «1» и подходит для большинства автомобилей отечественного автопрома (кроме некоторых моделей последнего поколения и экспортных комплектаций). В таких аккумуляторах на лицевой панели плюсовая клемма  находится слева, а минусовая - справа. Чтобы исключить ошибки при подключении, на корпусе аккумулятора обычно токовыводы помечены значками «+» и «-».

Обратная полярность

Европейская (обратная) полярность – это практически полный модельный ряд европейских, японских, корейских и американских автомобилей. АКБ с обратной полярностью маркируются значком «0». В них плюсовая клемма будет на лицевой панели справа, а минусовая – слева.

Существуют еще аккумуляторы с диагональным расположением токовыводов (маркируются значком «2»), а также европейские АКБ для грузовиков с обратной боковой полярностью («3»), и отечественные АКБ для грузовиков («4») с прямой боковой полярностью. Чтобы не ошибиться при их подключении, следует внимательно следить за цифровой маркировкой моделей батарей.

Почему это важно?

Купить по ошибке аккумулятор с неподходящей для автомобиля полярностью или неправильно подключить к АКБ клеммы может иногда даже опытный водитель: внешне и по техническим характеристикам батареи с прямой и обратной полярностью могут ничем не отличаться. 

В тоже время, неправильное подключение полярностей опасно для автомобиля множеством неприятных последствий: быстрой разрядкой аккумулятора, коротким замыканием (горят предохранители), воспламенением электропроводки, разрушением самого аккумулятора, выходом из строя ЭБУ (бортового компьютера) или генератора, перегоранием предохранителей АКБ, системы освещения авто, сигнализации и печки. При неправильном подключении аккумулятора к зарядному устройству, сгорит зарядное устройство, а при подзарядке одного АКБ от другого («прикуривание») – могут сгореть обе батареи и даже оба автомобиля. 

Самостоятельное определение полярности 

Если номерная маркировка аккумуляторов и символы токовыводов («+» и «-») отсутствуют на корпусе батареи, воспользуйтесь тестером (мультиметр или вольтметр), который точно определит полярность токовыводов аккумулятора. Прибор, подключенный к токовыводам щупами, покажет наличие положительного напряжения при правильном подключении, и отрицательное - при неправильном.

Кроме того, на большинстве моделей АКБ положительный контакт чаще всего помечен красным цветом (обычно такая маркировка практически не стирается), а его размер обычно больше, чем у отрицательного токовывода. Следует помнить, что для некоторых моделей аккумуляторов американского производства эти методы определения полярности не действуют: сама батарея просто не имеет штырей токовыводов (вместо них выемки под контакты). 

Использование аккумуляторов с неподходящей полярностью

Если вы по ошибке купили аккумулятор с полярностью, которая не соответствует техническим требованиям вашего автомобиля, то теоретически такой АКБ можно использовать (хотя и нежелательно), развернув его другой стороной в гнезде под капотом.  Но вы рискуете столкнуться с тем, что вам не хватает длины одного из клеммных кабелей, который придется наращивать пусковыми проводами. 

Специалисты не рекомендуют делать этого, так как можно ошибиться в расчете сечения кабеля и сжечь всю электрику на автомобиле. Проще поменять АКБ у продавца, а еще лучше – заранее разобраться с полярностью авто и при покупке сразу заказывать ту батарею, которая рекомендована производителем авто. 

что такое прямая и обратная, в чем разница и как определить отличия

Каждая аккумуляторная батарея имеет на корпусе полюсные выводы – минус (-) и плюс (+). Через клеммы она подключается к бортовой сети автомобиля, питает стартер и другие потребители. Расположение плюса и минуса определяет полярность АКБ. Водителям важно точно знать полярность аккумулятора, чтобы не перепутать контакты при установке.

Полярность аккумулятора

Полярностью называют схему расположения токовыводящих элементов на верхней крышке или лицевой стороне аккумулятора. Другими словами, это положение плюса и минуса. Токовыводы также выполнены из свинца, как и пластины внутри.

Прямая и обратная полярности

Существуют две распространенные схемы расположения:

  • прямая полярность;
  • обратная полярность.

Прямая

В советский период все аккумуляторы отечественного производства были с прямой полярностью. Полюсные выводы располагаются по схеме – плюс (+) слева и минус (-) справа. Аккумуляторы с такой же схемой выпускаются и сейчас в России и на постсоветском пространстве. АКБ иностранного производства, которые сделаны в России, также имеют данную схему расположения выводов.

Обратная

На таких аккумуляторах слева расположен минус, а справа плюс. Данное расположение характерно для АКБ европейского производства и поэтому такую полярность часто называют «европолярностью».

Аккумуляторная батарея

Каких-то особых преимуществ разная схема положения не дает. Она не влияет на конструкцию и эксплуатационные особенности. Проблемы могут возникнуть при установке нового аккумулятора. Другая полярность заставит поменять положение батареи и длины провода может не хватить. Также водитель может просто перепутать контакты, что приведет к замыканию. Поэтому важно уже при покупке определиться с типом АКБ для своего автомобиля.

Как определить?

Узнать это не так сложно. Для начала нужно повернуть батарею лицевой стороной к себе. Она находится со стороны расположения наклеек с характеристиками и логотипом. Также и полюсные выводы находятся ближе к лицевой стороне.

На многих аккумуляторах можно сразу увидеть знаки «+» и «−», которые точно указывают полярность контактов. Другие производители указывают информацию в маркировке или выделяют токовыводы цветом. Обычно плюс имеет красный цвет, а минус синий или черный.

В маркировке обратная полярность обозначается литерой «R» или «0», а прямая литерой – «L» или «1».

Различия в корпусе

Все АКБ можно условно разделить на:

  • отечественные;
  • европейские;
  • азиатские.
Полярность и диаметр клемм европейских и азиатских аккумуляторов

Они имеют свои стандарты производства и расположения выводов. Европейские АКБ, как правило, более эргономичны и компактны. Выводные контакты имеют больший диаметр. Плюс – 19,5 мм, минус – 17,9 мм. Диаметр контактов на азиатских АКБ значительно меньше. Плюс – 12,7 мм, минус – 11,1 мм. Это также нужно учитывать. Разность диаметров также указывает на тип полярности.

Можно ли установить аккумулятор другой полярности?

Такой вопрос часто возникает у тех, кто по невнимательности купил аккумулятор другого типа. Теоретически, это возможно, но потребует затрат и лишней волокиты с установкой. Дело в том, что если купить АКБ с обратной полярностью на отечественный автомобиль, то может банально не хватить длины проводов. Просто так удлинить провод не получится. Нужно учитывать сечение и диаметр клемм. Также это может сказаться на качестве передачи тока от батареи.

Оптимальным вариантом станет замена аккумулятора на другой с подходящим расположением контактов. Можно попытаться продать купленный АКБ, чтобы не быть в убытке.

Смена полярности аккумулятора

Некоторые водители прибегают к способу переполюсовки АКБ. Эта процедура смены местами плюса и минуса. Также она делается для восстановления работоспособности батареи. Проводить переполюсовку рекомендуется только в крайних случаях.

Внимание! Мы не рекомендуем проводить данную процедуру самостоятельно (без помощи профессионалов) и в необорудованных специальным образом условиях. Последовательность действий ниже приведена в качестве примера, а не инструкции и с целью полноты раскрытия темы статьи.

Последовательность переполюсовки:

  1. Разрядить батарею до нуля, подключив какую-нибудь нагрузку.
  2. Плюсовой провод подключить к минусу, а минусовой к плюсу.
  3. Начать зарядку аккумулятора.
  4. Прекратить зарядку при закипании банок.

В процессе начнет расти температура. Это нормальное явление, которое указывает на смену полюсов.

Эту процедуру можно проводить только на исправной батарее, которая может выдержать активную сульфатацию. В дешевых АКБ свинцовые пластины очень тонкие, поэтому они могут просто разрушиться и не восстановиться. Также перед началом смены полюсов нужно проверить плотность электролита и банки на замыкание.

Что может произойти, если перепутать при установке?

Если перепутать полярность, то может произойти следующее:

  • перегорание предохранителей, реле и проводов;
  • выход из строя диодного моста генератора;
  • перегорание электронного блока управления двигателем, сигнализации.

Самой простой и дешевой проблемой может стать перегорание предохранителей. Впрочем, это их главная функция. Найти сгоревший предохранитель можно мультиметром путем «прозвона».

Если пе

Определение полярности АКБ

У автомобильных аккумуляторов бывает полярность двух видов: прямая и обратная. Иногда продавцы аккумуляторов говорят «аккумулятор с правым плюсом» или «аккумулятор с левым плюсом». Во всех этих случаях речь идет о расположении положительной и отрицательной клемм аккумулятора (полюсных выводов).

Для правильно определения полярности аккумулятора в легковом автомобиле, его необходимо развернуть к себе, как на рисунке:


Непосредственно на выводах, либо рядом с ними обязательно должны быть значки «+» и «-», которые обозначают полюса.

  1. Если плюс справа, то это аккумулятор обратной полярности. Ее могут называть также "евро полярность" или обозначать "0" или «R».
  2. Если плюс слева, то это прямая полярность. Ее могут называть также «стандартная, «1» или «L».

Как правило, на отечественных легковых автомобилях установлены аккумуляторы, имеющие прямую полярность. На иномарках же в ходу обратная полярность.

Совсем иначе обстоит дело с полярностью у аккумуляторов для грузовиков, автобусов, строительной и специальной техники емкостью более 110 Ач:

  • «3» — «+» слева (евро, обратная). Для европейских грузовиков.
  • «4» — «+» справа (стандартная, прямая). Для российских грузовиков.

Еще одна особенность АКБ - исполнение корпуса. Различают два основных:

- для азиатских автомобилей (китайских, корейских, японских, некоторых американских). У них клеммы выступают над крышкой корпуса. Они выше, чем европейские АКБ.


- для европейских авто. Клеммы утоплены в крышку аккумулятора. Они ниже азиатских АКБ.


Несколько слов об уходе за клеммами АКБ.

Уход за полюсными выводами аккумуляторной батареи сводится к выявлению и уничтожению следов коррозии. Следы коррозии выглядят как порошкообразные отложения белого или желтоватого цвета.

Для обработки клемм нужно:

  1. Снять аккумулятор с автомобиля.
  2. Обработать выводы батареи раствором воды с содой.
  3. Начнется реакция с образованием пузырьков. Выводы станут коричневого цвета.
  4. При необходимости зачистить выводы металлической щеткой.
  5. После завершения реакции вытереть полюсные выводы и саму батарею смоченной в холодной воде тряпкой и просушить аккумулятор.
  6. Поставить АКБ в гнездо на автомобиль.
  7. Нанести тонкий слой вазелина на клеммы и выводы. Это предотвратит дальнейшее образование коррозии.
  8. При выключенном зажигании подсоединить провода к полюсным выводам аккумулятора.

что это такое и как определить

Многие автолюбители, приобретая новую аккумуляторную батарею, обращают внимание только на ее рабочие параметры – напряжение, емкость, и размеры, забывая при этом о полярности. Сразу отметим, что этот термин у АКБ не относится к физике, а является исключительно конструктивным понятием. В результате, игнорирование полярности приводит к тому, что батарею просто не удается подключить к сети потому, что провода с клеммами не достают к выводам аккумулятора.

Что значит прямая или обратная полярность аккумулятора

Понятие «полярность» определяет положение клеммных выводов аккумуляторной батареи. Самыми распространенными являются два ее вида – прямая и обратная. Далее разберемся, что такое прямая и обратная полярность аккумулятора, как ее определить, и также некоторые полезные советы.

  • Аккумуляторы с прямой полярностью – еще разработка советских инженеров, отсюда и второе ее название. Применяется она на батареях, производимых на постсоветском пространстве. Ее особенность заключается в том, что «плюсовой» вывод установлен слева, а «минусовой» — справа на верхней крышке корпуса АКБ.
  • Обратная полярность – противоположность прямой. Ее используют в европейских странах, поэтому на иномарках применяется именно она. У такой полярности «плюс» расположен справа, а «минусовой» вывод – слева.

Сразу отметим, что и не на всех европейских машинах устанавливаются АКБ с обратной полярностью. Некоторые модели, которые собираются в СНГ, могут комплектоваться аккумуляторами с прямой полярность. А вот на отечественных машинах, даже на самых последних моделях, используются батареи с прямой полярностью.

Теперь о том, почему так важно знать, какая полярность АКБ нужна. Здесь все просто – провода для подключения к батарее имеют ограниченную длину, поэтому установка аккумулятора с неподходящей полярностью приведет к тому, что его просто невозможно будет подключить к бортовой сети, поскольку клеммы не будут доставать до выводов.

Как определить прямая или обратная?

Распознать, какая полярность у аккумулятора совсем несложно. Достаточно повернуть его «лицом» к себе, то есть, чтобы боковая наклейка была обращена в вашу сторону, а сами выводы располагались с ближней стороны. После этого просто смотрим, как расположены выводы: если «плюс» — слева, то прямая полярность, правое же его положение указывает на обратную.

Но перед приобретением новой батареи важно учитывать не только полярность, но и само ее расположение в посадочном месте на авто. Ведь достаточно повернуть батарею на 180 град, чтобы поменять полярность аккумулятора, вот только выводы в таком случае будут с дальней стороны. А это уже может создать проблемы с подключением АКБ к бортовой сети, из-за того, что проводов будет нахватать или же что-то помешает накинуть и закрепить клеммы.

Видео о прямой и обратной полярности аккумулятора

Что делать если перепутал полярность?

Бывает так, что батарея уже приобретена, но полярность ее не подходит, а возможности заменить на аккумулятор с нужным положением выводов нет. И все же ее можно подключить к сети авто.

Но для этого АКБ следует разместить так, чтобы «плюсовой» вывод располагался как можно ближе соответствующей клемме проводки (развернуть аккумулятор, немного сместить его в сторону). Важно сделать так, чтобы получилось подключить клемму к выводу батареи и закрепить ее.

Естественно, «минусовой» провод при этом доставать до вывода не будет, да это и не нужно. Далее берем длинный отрезок провода с хорошим сечением (можно использовать часть провода для «прикуривания»). Откручиваем «родной» массовый провод от кузова авто и заменяем его подготовленным отрезком. Закрепляем на конце клемму для подключения к АКБ и накидываем ее на вывод. Таким способом можно подключить к бортовой сети батарею с любой полярностью.

Похожие публикации

что это такое, описания и примеры

При осуществлении соединения элементов конструкций сваркой, их монтаже и ремонте одним из вариантов является использование постоянного тока. Немаловажным фактором служит правильная настройка применяемой аппаратуры. Чтобы это осуществить, следует четко понимать, что такое прямая и обратная полярность при сварке.

Выбор зависит от поставленной задачи, которую необходимо решить. Полярность применительно к оборудованию означает один из вариантов его использования. Полярность при сварке влияет на протекание физических процессов во время производственного процесса. При переключении на другой вариант ток начинает течь в ином направлении, и сварка будет осуществляться по-другому. Это понятие во многом имеет отношение к сварке, осуществляемой с инвертором.

Дуговая сварка - режимы полярности

Для соединительных операций сваркой обычно находит применение ток неизменного значения. Имеется возможность выбирать, как будет осуществлена сварка постоянным током - обратной или прямой полярности.

Установка, предполагающая полярность прямую, позволяет качественно сваривать детали, обладающие немалой толщиной. Сварка током обратной полярности помогает избежать такого трудно исправляемого дефекта, как прожег, часто появляющегося, когда сварке подлежат тонкие металлические листы. Режим, предполагающий применение переменного тока, применяют исключительно редко, поскольку производительность прохождения процесса резко снижается.

При сварке ручным методом выбор режима, в частности, заключен в том, что имеется возможность устанавливать разную полярность, подключая соединение и электрод к разным клеммам, находящимся на лицевой стороне аппарата. Обратная полярность при сварке - это следующий способ подключения - электрод к клемме положительной, а детали - к клемме отрицательной. Такая раскладка определяет понятие, что значит обратная полярность при сварке.

Прямой вариант означает противоположное включение. Тогда интенсивнее электрода начинают плавиться детали соединения, что является преимуществом при сварке толстых элементов конструкции. Эти явления соответствуют законам физики по термодинамике. Электрическая дуга, представляющая собой поток электронов и ионов, служит источником тепла.

Три составные части дуги: столб, область анодная и область катодная. При горении дуги происходит образование активных пятен. То из них, которое находится на аноде, именуется анодным пятном, а на катоде - катодным.

Столб - это плазма, разогретая до сверхвысокой температуры. Энергия тепла в дуге выделяется неравномерным образом. Электроны, достигшие анода, отдают ему собственную энергию. На этом месте появляется анодное пятно, разогретое в значительной степени. Ионы с положительным зарядом двигаются в сторону катода. Достигнув его, они отдают собственную энергию и образуют там катодное пятно. Поскольку электронов, как правило, больше, то анод является более разогретым, чем катод.

Полярность при сварке постоянным током имеет два варианта. Это находится в зависимости от способов подключения. Они являются противоположными. Для получения прямого вида к изделию подсоединят "плюс", а к стержню с обмазкой - "минус". Для получения обратной делают все противоположным способом.

Если процесс происходит с неизменным током при установке прямого варианта, электрод начинает нагреваться медленнее, чем свариваемый металл. Получаемый сварной шов имеет более глубокую величину проплавки. Помимо этого, горение дуги является более устойчивым. Обратный вариант полярности имеет смысл применять, если слишком большое выделение теплоты ухудшает качество шва. Такая ситуация возможна, когда сварке подлежат материалы, не слишком хорошо переносящие перегрев - высокоуглеродистые, легированные стали, некоторые цветные металлы. Также, если сварке подлежат тонкие листы.

При распространенном виде процесса - дуговой сварке, существенную роль играют различные параметры, такие как выбранный диаметр электрода, его тип и марка, напряжение на сварной дуге, скорость сварного процесса, положение шва. Одним из самых важных параметров является полярность сварки.

Род тока, который применяется в дуговой сварке, делится на два вида. Сварку дуговым способом на переменном токе осуществляют, когда предстоит совместить детали, выполненные из низколегированной стали. При этом желательно использование электродов, имеющих рутиловое покрытие. Сварку постоянным током можно осуществлять двумя способами - прямым и обратным.

Прямой вариант используют, когда предстоит сварка чугунных изделий или требуется глубокий проплав металла. Обратный вариант применяется, когда требуется сварить нетолстые листы, а сварка происходит с усиленной скоростью расплавки электрода, и еще для сваривания низкоуглеродистой стали.

Полярность влияет на внешний вид шва - его габариты и конфигурацию. При сварке постоянным током обратной полярности величина, которая означает глубину проплавки, почти в два раза значительнее, чем прямой.

Отличия режимов при сварке

Сварка прямой и обратной полярности обладает существенными различиями. Прямая полярность при сварке обладает нюансами, которые рекомендуется принимать к сведению:

  • значительную глубину;
  • небольшую ширину шва;
  • такие подключения осуществляются для сварки металлических изделий из металла, имеющих толщину не менее трех миллиметров;
  • вольфрамовые стержни используют для деталей, изготовленных из цветных металлов;
  • стабильность горения дуги;
  • быстрая расплавка электродов;
  • разбрызгивание увеличивает расход электродов.

Обратный вариант применяют тогда, когда предполагается уменьшить риск появления серьезных дефектов, приводящих к отбраковке. Такой вид также имеет смысл применять, когда сварке подлежат детали, предназначенные для ответственных конструкций. Чтобы предотвратить коробление при значительном нагревании обратный вариант применяют для сварки тонких листов.

Также имеет смысл ее использовать, когда сварке подлежат две стальные детали, обладающие разной степенью легированности. Подобные соединения обладают повышенной чувствительностью к лишнему перегреванию. Обратный способ используют, когда сварка происходит под защитой инертными газами.

Обратная полярность при сварке обладает в свою очередь такими особенностями:

  • обратная полярность при сварке постоянным током создает соединение не чересчур глубоким, но зато широким;
  • качество будет не таким высоким, если использовать обратный способ при сварке не тонких деталей;
  • при обратном варианте нельзя применять виды стержней, обладающих повышенной чувствительностью к перегреванию;
  • при снижении силы тока могут возникнуть скачки дуги и, соответственно, снижение прочности соединения.

При подключении аппарата к обычной сети, обеспечивающей ток переменного значения, надо использовать стержни с рутиловой оболочкой вследствие отсутствия у них зависимость от полярности. В этом случае допустимо применение любого варианта.

Что влияет на выбор

Прямая или обратная полярность при сварке выбирается сварщиком в первую очередь в зависимости от поперечных габаритов металла, подлежащего сварке. Когда она является значительной, массу на приборе следует подключать к плюсовой клемме, а электрод - к минусовой. Значительная температура на толстых элементах основательно прогреет металл в рабочей зоне. Это будет способствовать более глубокой величины провара. Сварной шов получится прочным и качественным.

Оправдывать себя будет обратная полярность при сварке тонкостенных металлических изделий. Это объясняется тем, что анодное пятно образуется на электроде, что устраняет угрозу пережога тонких деталей конструкции.

Прямая или обратная полярность в сварке выбираются также в зависимости от вида и типа металла, из которого изготовлены детали будущей конструкции. К примеру, полярность при сварке нержавейки или чугуна для получения надежного соединения должна быть обратной. Такой выбор обусловлен тем, что при этом не происходит перегрева деталей и не происходит образования тугоплавкого шва, которое потребует в дальнейшем особую обработку.

Прямая полярность при сварке применяется, когда предстоит соединять детали из алюминия. При этом пленка, которая покрывает цветной металл, от сильного нагревания расплавляется, и не является больше препятствием для образования правильного шва.

Один из критериев выбора режима - металл, применяемый в качестве покрытия стержня. Электроды, имеющие угольное покрытие, при использовании обратного варианта нагреваются быстро и разрушаются также быстро. Проволока, в которой покрытие отсутствует, хорошо себя проявляет при прямом способе.

Методика сварки должна быть описана в сопроводительной документации на соединение. Также имеются справочники, в которых содержатся необходимые сведения. Опытные сварщики могут руководствоваться своей практикой, чтобы сделать грамотный выбор полярности.

Влияние полярности на сварку

Полярность тока оказывает влияние на такие важные факторы, как глубина проплавления, качество сварного соединения и химический состав получившегося шва. Что сделать правильную установку надо четко понимать, что такое сварка током обратной полярности и что такое сварка током прямой полярности.

Термическими нюансами варианта с обратной установкой являются то, что после того, как произошло зажигание дуги, начинается появление анодного и катодного пятен. Разница температур у них является вполне впечатляющей - до 800°С. Выше температура у анодного пятна. Такое значительное количества тепла является положительным моментом для процесса, основанного на расплавления материалов с целью их дальнейшего соединения. Таким образом, обратная сварка по определению обеспечивает получение лучшего сварного шва.

При сварке с помощью постоянного тока в режиме прямой полярности металл электрода имеет скорость сгорания на 20-40% выше, чем в режиме обратной, что является недостатком метода. При работе с переменным током установка полярности никакой роли не играет. От подключения полюсов зависит форма и размеры сварного шва, что является немаловажным обстоятельством.

Достоинства и недостатки двух методик

Разные виды подключения оказывают различное влияние на процесс сварки. Нюансами сварки обратным током являются:

  • тепловая энергия поступает в большем количестве на изделие, чем на стержень с обмазкой;
  • существенный разогрев гарантирует глубокую проплавку, что является важным для получения качественного шва;
  • плавление электрода происходит в медленном темпе, что не требует его частой замены;
  • значительно снижается степень разбрызгивания металла и возникновения дефектов вследствие этого.

Прямая полярность тока при сварке имеет следующие нюансы:

  • заготовленные для сваривания детали нагреваются минимально;
  • электрод быстро плавится, что приводит к необходимости его частой замены;
  • происходит значительное разбрызгивание раскаленного металла.

Из сравнения видно, что обратная сварка обладает большим количеством преимуществ. Однако большинство производителей электродов дают свои рекомендации по применению конкретных видов этих изделий и указывают их на этикетке или в сопроводительной документации на товар.

Сварка полуавтоматом

Такой вид осуществления сварочного процесса является очень популярным и имеет много достоинств. Правильно выбранная полярность при сварке полуавтоматом позволяет выполнить этот процесс наилучшим образом. Так, например, в случае, когда сварке подлежат детали, изготовленные из нержавеющей стали и при этом применяется защитный газ, следует выбирать обратное подключение. Когда сварке подлежат алюминиевые детали и используется порошковая присадочная проволока, то использовать целесообразнее прямое подключение.

При полуавтоматической сварке происходят некоторые изменения. Держак с электродом подключают на плюс, и массу на минус. Так делают для того, чтобы применяемый для этого способа флюс полностью выгорел. Тогда сварочный процесс происходит внутри газообразного облака. Металл меньше разогревается, а разбрызгивание раскаленного металла станет минимальным.

Сварка инвертором

Инвертор - это устройство, пришедшее на смену широко применяемым ранее трансформаторам. Он обладает меньшим весом и компактностью. Еще одно преимущество перед трансформаторами - меньшее разбрызгивание раскаленного металла. Вся потребляемая инвертором электроэнергия расходуется только на функционирование сварной дуги.

Инвертор представляет собой прибор, обладающий определенными характеристиками, которые позволяют осуществлять с его помощью работы по сварке с применением различных технологий. Помимо всех основных характеристик, присущим обычным трансформаторам, инверторы обладают дополнительными, которые делают использование этого прибора более удобным и значительно расширяет их технические возможности. Инверторы могут применяться в промышленности и при сварочных работах в домашних условиях.

В комплект инвертора входят два кабеля. Первый их них заканчивается держателем, предназначенным для электрода. Второй - зажимом в форме прищепки для закрепления на детали. Одно из основных преимуществ - возможность установки при сварке инвертором прямой и обратной полярности.

Инвертор, по сути, представляет собой прибор, преобразующий переменный ток из розетки в ток постоянный. Конструкция устройства предполагает наличие металлического корпуса, на котором для осуществления охлаждения установлены вентиляционные решетки. Для удобства при переноске прибор имеет наплечный ремень, обладающий регулировкой по размеру. Для подключения кабеля имеются стандартные разъемы. Один из них служит плюсом, а второй - минусом.

На лицевой стороне находится защита от перегрева - специальный индикатор, который срабатывает при превышении установленной температуры. С помощью маховика осуществляется плавная регулировка сварочного тока в диапазоне 10-180 В.

Как происходит сварка инвертором

Основой инверторной сварки является классический принцип, заключающийся в том, что сваривание может осуществиться при наличии высокой температуры от появившейся сварной дуги.

От контакта электрода с поверхностью изделия образуется сварная дуга. Под влиянием высокой разогретости стержень с обмазкой и часть детали, находящаяся в процессе, плавятся, следствием чего является образование сварочной ванны. Часть обмазки электрода переходит в газообразное состояние, защищающего ванну от вредоносного действия кислорода. Жидкая составляющая расплавленной обмазки располагается поверх металла, находящегося в жидком состоянии, защищая его.

Остывая, жидкая обмазка образует шлак, который находится снаружи шва. Его удаляют постукиванием молотка. Важным обстоятельством для получения хорошего шва является непрерывность горения дуги. Для этого необходимо следить за постоянством длины дуги, то есть расстоянием между деталью и электродом. Это обеспечивается одинаковой скоростью, с которой электрод подается в зону сваривания. Следует стараться электрод вдоль наплавленного валика вести ровно, не отклоняясь.

Для того, чтобы при сваривании при помощи инвертора появилась дуга между электродом и деталью их металла, их необходимо подключить к разным полюсам. Разница в режимах состоит в том, куда будет подключен электрод на минус или на плюс. Правильный выбор зависит, в частности, от толщины свариваемых деталей и других факторов.

Прямую и обратную полярность при сварке постоянным током иначе называют "электрод-отрицательной" и "электрод-положительной". Такие названия более понятны и отражают варианты подключения электрода к плюсу или к минусу. Таким образом, существует правило - при прямой или иначе "электрод-отрицательной" полярности электрод подключен к минусу, а при обратной или иначе "электрод-положительной" полярности электрод подключен к плюсу.

Каждый сварочный аппарат имеет гнезда, в которые подключают кабель от держателей, функцией которых является зажим электродов. Их также иначе называют массой.

Сварка масса плюс или минус означает, что куда цеплять массу при сварке, то есть, - к какому полюсу будет подключен кабель от держателя с закрепленным в нем электродом, такая и будет получена полярность. Для получения прямой полярности кабель держателя следует подключать к положительной клемме, а для получения обратной полярности кабель держака с электродом подключают к отрицательной клемме.

Держак инвертора

При установке плюса или минуса при сварке держак следует подобрать правильно и держать его удобным способом. Чтобы имелась возможность свободно манипулировать рукой для управления инвертором при сварке, рекомендуется правильно размещать держак, в котором закрепляется электрод.

Существует несколько видов держаков:

  1. Прищепка. Это самый распространенный, удобный и дешевый вариант. В зависимости от конструкции она бывает пружинной и рычажной.
  2. Вилка-трезубец. В ней можно удерживать электрод любого диаметра. Такое устройство можно изготовить самостоятельно.
  3. Цанга. Зажимает крепко, имеет большой срок службы. Находит применение при сварке конструкций, имеющих повышенную значимость.
  4. Держатель безогарковый. Металлический штырь 1 вмонтирован в цилиндрическую рукоятку 2. Фиксация электрода обеспечивается его привариванием к штырю.
  5. Винтовой. Имеет много достоинств: обеспечивают бесперебойную подачу тока, обладают хорошим контактом, имеют возможность хорошего закрепления электродов.

При сварке с помощью инвертора рекомендуется кабель держака обернуть вокруг части руки, расположенной между локтем и кистью. После этого взять держак в руку. Тянуть кабель сможет предплечье, а кисть руки остается свободной. Это поможет свободному манипулированию рукой при осуществлении сварочного процесса.

Выбор инвертора и его эксплуатация

Прямое и обратное подключение сварочного инвертора является функцией любого агрегата этого типа. Кроме этого аппарат должен обладать дополнительными свойствами:

  • антиприлипание;
  • горячий старт;
  • возможность работы с постоянным и переменным током;
  • работа в помещении с повышенной влажностью;
  • защита от перегрева;
  • индикация в цифровом виде.

Помимо этого следует тщательно подойти к грамотному выбору электродов для конкретного вида сварочного соединения. При покупке нет смысла интересоваться у продавца или искать в сопроводительной документации ответ на вопрос "Можно ли менять полярность на сварочном инверторе?". Такой функцией обладают все имеющиеся модели инверторов.

Для нормального функционирования прибора надо перед началом сварочных манипуляций производить его осмотр. При выявлении повреждений таких защитных элементов, как изоляция кабелей или шнуров от сети, следует произвести их замену. Проверка включает отсутствие значительных механических изменений корпуса инвертора, которые могли бы повлиять на нормальный ход работы.

Необходимо также провести внутреннюю чистку аппарата. Для этого придется снять кожух, чтобы получить доступ к внутренним узлам. Чтобы не навредить содержимому, чистку от пыли и грязи следует проводить струей сжатого воздуха. Отдельно проводится контроль состояния клемм, подключение к которым определяет полярность при сварке инвертором. При обнаружении на них окисления его удаляют наждачной бумагой мелкой зернистости.

Перед началом процесса сварки необходимо произвести подготовительные работы. В их число входит очистка и обезжиривание деталей, подлежащих соединению. Затем необходимо выставить на аппарате необходимые режимы. В частности, необходимо проанализировать, какая полярность подключения сварочного инвертора подойдет для осуществления конкретного вида сварки. Выяснив, какая полярность при сварке инвертором будет наиболее целесообразна, надо соответствующим образом установить кабели в предназначенные для этого клеммы, поскольку полярность сварки инвертором обеспечивается именно этим подключением.

Работа с применением инвертора на постоянном токе возможна только при двух вариантах настройки, которые регулируют направление, в котором будет двигаться электроны.

Прямая полярность при сварке инвертором предполагает, что подключение "минуса" произошло к электроду, а "плюса" - к металлической детали. Такой режим необходим для увеличения глубины сварного шва при соединении заготовок, обладающих большой шириной.

Обратная полярность при сварке инвертором означает, что электрод при выставлении необходимого режима был подключен к "плюсу", а металлическая деталь, соответственно, к "минусу".

Если во время рабочей смены ставится задача сваривания разных соединений, то для того, чтобы изменить режим достаточно поменять подключение к необходимым клеммам, что является не просто простым действием, а очень простым, осуществляемым вручную. Сварка инвертором обратной полярностью применяется значительно чаще, чем прямой. Это позволяет получить сварные шва необходимой глубины, толщины, конфигурации.

Грамотно выбранная полярность на сварочном инверторе зависит от следующих обстоятельств:

  1. Толщина деталей. При подсоединении, обеспечивающем прямую полярность, деталям достается основной нагрев. Ширина шва получается довольно глубокой. Для тонких деталей это не годится, поскольку может образоваться дефект в виде прожига, который не всегда можно ликвидировать. Поэтому для сварки тонких листов целесообразно применять обратный вариант.
  2. Вид материала свариваемых деталей. При сварочных работах приходится иметь дело с различными металлами и сплавами, которые обладают разными свойствами. К примеру, к среднеплавким металлам относится часто применяемый в конструкциях алюминий. Ему подойдет прямое включение. Перегревать нержавеющую сталь не стоит, поэтому для нее выбирают обратное подключение. Предварительный анализ и справочники помогут эффективно подойти к этому вопросу.
  3. Тип электрода. Все электроды имеют покрытие, которое при сгорании вытесняет воздух, препятствуя возникновению такого дефекта, как поры. При выборе режима необходимо учитывать совместимость режима с видом покрытия. Например, если применяют при сварке электроды с угольным покрытием, то обратная сварка не является подходящим вариантом.

Сложным случаем является, когда электрод и заготовки обладают характеристиками, которые требуют противоположных настроек. Тогда выбор полярности сварки - обратной или прямой потребует компромиссного решения. В качестве дополнительных мер принимается регулировка тока и скорости сварочного процесса. Такое решение под силу сварщикам, обладающим большими навыками, а начинающим работникам следует с ними посоветоваться. Выбор режима должен быть указан в технологической карте на производственный процесс.

Выбор электродов

При выборе электродов, предназначенных для сварки с помощью инвертора, необходимо иметь в виду, что на него будет оказывать влияние марка и вид материала, из которого изготовлены детали изделия. Особенности выбора электродов для сварки также зависят от многих факторов, таких как: какой вид тока будет использоваться при сварке - постоянный или переменный, пространственное положение сварных швов, предполагаемая скорость сварки, количество слоев шва.

К критериям выбора электродов относится то, какой должен быть вид стержня - плавящийся или неплавящийся. Плавящиеся представляют собой стержни со специальной обмазкой, назначением которой является создание зоны защиты и повышения стабильности горения дуги. Такой вид находит применение при дуговой сварке. Неплавящиеся электроды используются при сварках под защитным газом, в частности аргоном.

На выбор электродов также оказывает влияние режим полярности. Полярность электродов подразумевает, к какой клемме следует подключить стержень с обмазкой, чтобы был осуществлен выбранный режим. Электроды при обратной полярности подсоединяют к клемме, имеющей обозначение "плюс".

Современные популярные марки электродов из существующего их рейтинга обладают при применении совместно с инвертором такими преимуществами:

  • простота выполнения производственного процесса сварки;
  • получение хорошего шва соединения различных форм и размеров;
  • отделяемость образовавшегося шлака, не составляющая большого труда;
  • возможность сваривать даже детали с коррозией;
  • безопасность для сварщика.

Выбор диаметра зависит от толщины элементов изделия, подлежащих сварке. При этом существует прямая зависимость. Чем более толстые детали, тем больший диаметр электродов следует выбирать для сварки деталей конструкции. Электроды совсем маленького диаметра используют для закрепления прихваток - небольших поперечных швов для фиксации соединяемых деталей.

Покрытия стержня электрода могут носить разный характер. Они условно разделены на 4 категории. Первая из них так и называется - основной и является наиболее распространенной. Такой вариант выбирают при желании получить соединение, обладающее высоким качеством, механической прочностью, пластичностью, устойчивостью к образованию трещин. Вариант вполне годится для ответственных конструкций и в дальнейшем использовании соединения в суровых климатических условиях.

Наиболее популярной маркой электродов с рутиновым покрытием является МР-3. Они обладают многими преимуществами:

  • успешно используются для соединения деталей из низкоуглеродистой стали;
  • обеспечивают качественное соединение, как при переменном, так и при постоянном токе;
  • при выполнении сварки инвертором происходит небольшое разбрызгивание раскаленного металла;
  • применимы для выполнения швов любого пространственного положения;
  • хороший внешний вид получаемого шва.

Две другие категории находят применение реже при определенных условиях сварочного процесса.

Обучение специалистов сварных работ

Работа сварщика является престижной и обладающей постоянной востребованностью. Но, для того, чтобы стать официально оформленным специалистом, необходимо получить образование в этой области. Это будет служить гарантией для работодателя, что сварные работы будут проведены грамотно, с соблюдением современных технологий и наименьшим процентом отхода в брак.

Поскольку развитие технологий сварки и выпуск нового оборудования происходят стремительно, то даже людям, имеющим большие практические навыки в этой области необходимо периодически проходить обучение, чтобы быть в курсе происходящих перемен и усовершенствований.

Обучению подлежат не только простые исполнители-сварщики, но и руководители работ - инженеры и технологи. Высший состав может закрепить свой статус при окончании профильных факультетов колледжей и институтов, а сварщикам достаточно окончить специализированные курсы.

После окончания курсов и успешного прохождения экзаменов учащемуся выдается удостоверение об окончании и присвоении ему соответствующего разряда. Такой документ является пропуском для получения денежной и интересной работы.

Программа занятий на курсах делится на две части - теоретическую и практическую. Первую из них ведут в специально отведенных для этого аудиториях лекторы, имеющие профильное образование и педагогический стаж.

Программа курса включает различные вопросы, в том числе соответствующие теме нашей статьи:

  • полярность электродов при сварке;
  • что такое обратная полярность при сварке;
  • что такое обратная полярность при сварке инвертором;
  • что это - обратная полярность при сварке постоянным током;
  • обратная полярность при сварке постоянным током - что это такое;
  • ток обратной полярности при сварке.

Разумеется, этим не исчерпывается полный список изучаемых предметов.

Практические занятия позволяют применить полученные знания в деле. На них обязательно должен присутствовать мастер, следящий за правильным ходом выполнения работ и отвечающий на возникшие вопросы.

За дополнительные деньги можно приобрести курс индивидуального обучения, но групповые занятия имеет свои преимущества. Рекомендуется прислушиваться к разбору совершенных ошибок других участников занятий. Это позволит приобрести дополнительную информацию о правильном выполнении различных методов сварки.

После окончания прохождения программы наступает очередь доказать свои знания и показать умение приемной комиссии на выпускном экзамене. При положительной оценке, выставленной комиссией, учащемуся выдают удостоверение узаконенного образца.

В удостоверении указывается наименование учебного центра, который его выдал. Указываются практические действия по сварке, проведенные экзаменуемым. Проставляется оценка за демонстрацию теоретических основ по сварке. Необходимо следить, что внизу имелись подписи председателя и членов экзаменационной комиссии. После этого новоиспеченный сварщик ставит свою подпись.

При окончании курсов можно получить конкретную специализацию, например, "Сварщик электродуговой сварки", «Газосварщик", "Сварщик-вышкомонтажник». В последнее время особо престижной является профессия "Сварщик-аргонщик". Она дает право работать на сварке под защитой газа-аргона, что дает большие преимущества перед другими способами.

Сварщикам, мастерам, инженерам, технологам и руководителям работ, желающим иметь доступ к контролю соединений на особо ответственных конструкциях, имеется возможность получить дополнительное образование, закончив курсы НАКС. Это значительно повысит их конкурентоспособность.

Интересное видео

как определить и на что влияет

Современный аккумулятор не требует от владельца каких-либо познаний технологии его работы. Будучи установленным в автомобиль, он служит верой и правдой положенный ему срок без дополнительного обслуживания.

Сравнивать автомобильную АКБ с обычной батарейкой не совсем корректно. При выборе аккумулятора следует иметь в виду, что любая аккумуляторная батарея обладает строгой полярностью, и туда, где предусмотрена прямая полярность подключения, сложно установить аккумулятор с обратной полярностью, как и наоборот.

Полярность аккумулятора прямая и обратная совершенно не сказывается на эксплуатационных свойствах батареи, это всего лишь порядок расположения контактных выводов на корпусе устройства. Поэтому во многих случаях аккумулятор одной и той же модели может выпускаться в двух модификациях.

Отдавая предпочтение определенной марке АКБ, уточняйте у продавца, какие полярности доступны для данного аккумулятора. Что такое обратная и прямая полярности аккумулятора, как её определить, вы сможете узнать из данной статьи.

Что значит прямая или обратная полярность

Полярность АКБ, как мы уже упомянули выше, может быть обратная и прямая. Прямая полярность была разработана еще для нужд советского автопрома. И до сих пор все автомобили, выпущенные в России, комплектуются аккумуляторами с прямой полярностью.

Обратная полярность, как несложно догадаться, используется в европейских, американских и азиатских авто. Правда то, что машина собрана за рубежом не всегда означает ее принадлежность аккумулятора к «обратнополярной» группе.

Что такое прямая и обратная полярность аккумулятора? Прямая полярность подразумевает плюсовую клемму слева и минусовую справа, в случае обратной полярности — плюс с минусом меняются местами.

Смотреть на батарею следует с лицевой стороны, ее можно определить по наклеенной этикетке, а в случае отсутствия таковой – лицевой считается та сторона, к которой ближе расположены клеммы. Если красная, плюсовая клемма (может быть обозначена гравировкой на корпусе) находится справа, значит, у аккумулятора обратная полярность.

Когда нужно определять полярность

При покупке новой батареи необходимо точно понимать, какая на аккумуляторе полярность. Установка аккумулятора с другой полярностью иногда возможна, путем его поворота в гнезде на 180 градусов. Но такие манипуляции не позволят полноценно затянуть крепления.

К тому же, чтобы автолюбитель не перепутал плюс с минусом, длина проводов у них разная, и правильно подключить аккумулятор удастся, только если нарастить провода, чтобы они могли дотянуться до нужных клемм.

Как определить полярность аккумулятора

Каждый владелец автомобиля должен знать, как определить полярность аккумулятора. Причем не только при покупке нового, а и при подзарядке старого, или перед «прикуриванием» от чужого аккумулятора, в случае низкого заряда.

Как правило, аккумуляторы имеют хорошо различимую маркировку на корпусе, «плюс» и «минус», особенно они видны на АКБ отечественного производства. В батареях, выпущенных в Азии или Европе, клеммы обычно имеют разный размер, и плюсовая «+» несколько больше в диаметре, нежели «-». Это не позволит вам по незнанию или забывчивости установить клеммы неправильно. Существует также практика маркировки клемм цветом: минус – черный (реже синий), плюс – красный.

В крайнем случае, можно воспользоваться обыкновенным тестером или вольтметром. Положительное значение будет свидетельствовать о том, что его плюсовой контакт подключен к плюсу батареи, и наоборот.  Выяснив полярность, можно сделать для себя пометку, причем не только на корпусе АКБ, но и на месте установки. В случае покупки нового аккумулятора это сослужит отличную службу, и спасет от случайной порчи электрооборудования автомобиля.

Прямая полярность аккумулятора

Прямая полярность аккумулятора, как мы уже отметили, до сих пор является стандартом для всех марок автомобилей, выпускаемых в странах бывшего СССР, что обуславливается принятыми государствами стандартами. Кстати, это в равной мере относится как к легковому, так и грузовому транспорту.

Также, прямая полярность характерна для иномарок, собранных на территории РФ и других стран по лицензии. Её особенность заключается в том, что плюсовая клемма расположении слева, и у батареи, как правило, одинаковые клеммы.

Обратная полярность аккумулятора

Принятая в США, Европе и Азии обратная полярность АКБ, характеризуется правосторонним расположением плюсового контакта. Заметим, что такие батареи отечественных производителей, как правило, хорошо маркированы, а импортные, в случае неправильного монтажа, даже не подходят по диаметру затяжного хомута на клеммах.

Если перепутать полярность

Подключение АКБ, не учитывая, что полярность аккумулятора прямая или обратная, не приведет к порче большинства электронных устройств автомобиля, но некоторые из них всё же могут пострадать. Скажем, лампы накаливания будут функционировать при любой полярности.

Стартер просто не сможет провернуть двигатель в обратную сторону, скорее сгорит реле, но в большинстве случаев при неправильном подключении клемм сработает «трещетка». Гораздо сложнее дело обстоит с постоянными потребителями электроэнергии.

Генератор

При смене полярности, генератор автомобиля становится не поставщиком, а потребителем электричества, что может спровоцировать поломку, его обмотка не рассчитана на встречное напряжение. Батарея при этом также может выйти из строя.

В лучшем случае, сгорит соответствующий предохранитель, или же ограничивающее реле, что, так или иначе, доставит лишние хлопоты и финансовые затраты. Поэтому перед пуском двигателя нужно обязательно убедиться в правильности подключения АКБ.

Электронный блок управления

Будучи постоянно подключенным к сети, за исключением случаев отключения массы, ЭБУ будет с большой долей вероятности выведен из строя, так как это электронное устройство требует строгой полярности питания. Учитывая, что в современных машинах блок управления это даже не одно устройство, их несколько, поиск неисправности может усложниться.

Выход ЭБУ из строя делает автомобиль непригодным к эксплуатации. А, между прочим, электронный блок – одно из самых дорогостоящих в диагностике устройств. Его питание рассчитано на малые токи, так что предохранитель может просто не успеть сгореть и разорвать цепь.

Поэтому, важное замечание!

Отключая массу перед работой с АКБ! Соблюдайте правильность подключения клемм, так вы избежите многих проблем с бортовым компьютером!

Блок предохранителей

Это самый простой и дешевый результат неправильного подключения аккумулятора. Предохранители, как расходный материал, сегодня стоят недорого, и самой большой проблемой для автомеханика самоучки будет найти сгоревший предохранитель. Впрочем, используя тестер или обыкновенную лампочку, «прозвон» займет от силы пять минут.

Заметьте, что используя современные П-образные предохранители, предпочтение лучше отдавать тем, у которых прозрачный корпус. У них на просвет видна целостность металлической нити, что очень удобно в отсутствии тестера.

Заключение

Подбирая новый аккумулятор для своей машины, ориентируйтесь на его характеристики. Это основной критерий выбора. Если вы отдаете предпочтение какой-то одной марке, то, как правило, с полярностью проблем не возникнет. Попросите продавца, чтобы он помог подобрать именно вашу модель.

Если же вы приобрели АКБ с неправильной «полюсовкой», верните его обратно в магазин. Но если возврат невозможен, тогда можете перевернуть аккумулятор на 180° в гнезде и нарастить провода до нужной длины.

Понимание обратного прохода через уровень пакетной нормализации

В настоящее время в Стэндфордском университете работает замечательный курс под названием CS231n - сверточные нейронные сети для визуального распознавания, который проводят Андрей Карпати, Джастин Джонсон и Фей-Фей Ли. К счастью, все материалы курса предоставляются бесплатно, а все лекции записаны и загружены на Youtube. Этот класс дает прекрасное введение в машинное обучение / глубокое обучение, сопровождаемое заданиями по программированию.

Пакетная нормализация

Одной из тем, которая занимала меня некоторое время, была реализация пакетной нормализации, особенно обратного прохода. Пакетная нормализация - это метод обеспечения любого уровня в нейронной сети входными данными, которые имеют нулевое среднее / единичное отклонение - и это в основном то, что им нравится! Но BatchNorm состоит из еще одного шага, который делает этот алгоритм действительно мощным. Давайте посмотрим на алгоритм BatchNorm:


Алгоритм пакетной нормализации скопирован из статьи Иоффе и Сегеди, упомянутой выше.

Посмотрите на последнюю строку алгоритма. После нормализации входных данных x результат сжимается линейной функцией с параметрами гамма и бета . Это изучаемые параметры слоя BatchNorm, которые позволяют сказать «Эй !! Я не хочу вводить нулевое среднее / единичное отклонение, верните мне исходные данные - это лучше для меня ». Если gamma = sqrt (var (x)) и beta = mean (x) , исходная активация восстанавливается.Это то, что делает BatchNorm действительно мощным. Мы инициализируем параметры BatchNorm, чтобы преобразовать входные данные в распределения с нулевым средним / единичной дисперсией, но во время обучения они могут узнать, что любое другое распределение может быть лучше. В любом случае, я не хочу тратить много времени на объяснение пакетной нормализации. Если вы хотите узнать об этом больше, статья написана очень хорошо, и здесь Андрей объясняет BatchNorm в классе.

Кстати: это называется «Пакетная» нормализация, потому что мы выполняем это преобразование и вычисляем статистику только для части (пакета) всего набора тренингов.

Обратное распространение

В этом сообщении в блоге я не хочу читать лекцию по обратному распространению и стохастическому градиентному спуску (SGD). А пока я предполагаю, что тот, кто прочитает этот пост, имеет некоторое базовое понимание этих принципов. В остальном позвольте процитировать Wiki:

Обратное распространение (сокращение от «обратное распространение ошибок») - это распространенный метод обучения искусственных нейронных сетей, используемый в сочетании с методом оптимизации, таким как градиентный спуск.Метод вычисляет градиент функции потерь относительно всех весов в сети. Градиент подается в метод оптимизации, который, в свою очередь, использует его для обновления весов в попытке минимизировать функцию потерь.

Уфф, звучит жестко, а? Я, возможно, напишу еще один пост на эту тему, но сейчас я хочу сосредоточиться на конкретном примере обратного прохода через BatchNorm-Layer.

Вычислительный график уровня пакетной нормализации

Я думаю, что одна из вещей, которые я узнал из класса cs231n, который помог мне лучше всего понять обратное распространение, - это объяснение с помощью вычислительных графов.Эти графики - хороший способ визуализировать вычислительный поток довольно сложных функций с помощью небольших кусочно дифференцируемых подфункций. Для слоя BatchNorm это будет выглядеть примерно так:


Расчетный граф BatchNorm-Layer. Слева направо, следуя черным стрелкам, идет прямой проход. Входными данными являются матрица X и гамма и бета как векторы. Справа налево, следуя красным стрелкам, идет обратный проход, который распределяет градиент от указанного выше слоя к гамме и бета и обратно до входа.

Я думаю, что для всех, кто следил за курсом или знаком с техникой прохода вперед (черные стрелки), его легко и просто читать. Из входных данных x мы вычисляем среднее значение каждого измерения в пространстве признаков, а затем вычитаем этот вектор средних значений из каждого обучающего примера. Сделав это, следуя нижней ветви, мы вычисляем дисперсию по измерениям, а вместе с ней и весь знаменатель уравнения нормализации. Затем мы инвертируем его и умножаем на разность входов и средних, и мы получаем x_normalized .Последние два больших двоичных объекта справа выполняют сжатие путем умножения на входной гамма и, наконец, прибавления beta . Et voilà, у нас есть наш пакетно-нормализованный вывод.

Обычная реализация forwardpass может выглядеть так:

  def batchnorm_forward (x, gamma, beta, eps): N, D = x.shape # step1: вычислить среднее mu = 1./N * np.sum (x, ось = 0) # step2: вычесть средний вектор из каждого примера тренировок xmu = x - мю # step3: по нижней ветви - знаменатель расчета sq = xmu ** 2 # step4: вычислить дисперсию var = 1./ N * np.sum (sq, ось = 0) # step5: добавьте eps для числовой стабильности, затем sqrt sqrtvar = np.sqrt (var + eps) # step6: инвертировать sqrtwar ivar = 1./sqrtvar # step7: выполнить нормализацию xhat = xmu * ivar # step8: Ни два шага преобразования gammax = гамма * xhat # step9 out = gammax + beta #store intermediate cache = (xhat, gamma, xmu, ivar, sqrtvar, var, eps) вернуться, кэш  

Обратите внимание, что для упражнения класса cs231n нам пришлось сделать немного больше (вычислить текущее среднее и дисперсию, а также реализовать другой прямой проход для режима обучения и режима тестирования), но для объяснения обратного прохода этот фрагмент кода будет работать .В переменной кеша мы храним кое-что, что нам нужно для вычисления обратного прохода, как вы сейчас увидите!

Сила цепного правила для обратного распространения

Для всех, кто продолжал читать до сих пор (поздравляю !!), мы близки к тому, чтобы прийти к обратному проходу BatchNorm-Layer. Чтобы полностью понять направление градиента в обратном направлении через BatchNorm-Layer, вы должны иметь некоторое базовое представление о том, что такое правило цепочки. Небольшое обновление следует за одним рисунком, который иллюстрирует использование цепного правила для обратного прохода в вычислительных графах.


Прямой проход слева в вычисляет `z` как функцию` f (x, y) `с использованием входных переменных` x` и `y` (это может быть буквально любая функция, примеры показаны в BatchNorm-Graph выше). Правая часть рисунков показывает обратный проход. Получив dL / dz, градиент функции потерь по отношению к z сверху, градиенты x и y на функции потерь можно вычислить, применив цепное правило, как показано на рисунке. .

Итак, снова, нам нужно только умножить локальный градиент функции на градиент, указанный выше, чтобы направить градиент в обратном направлении.Некоторые производные от некоторых основных функций перечислены в материалах курса. Если вы понимаете это и обладаете некоторыми базовыми знаниями в области математического анализа, то, что будет дальше, будет совсем несложно!

Наконец: обратный проход пакетной нормализации

В комментариях к приведенному выше фрагменту кода я уже пронумеровал вычислительные шаги последовательными числами. Обратное распространение выполняет эти шаги в обратном порядке, поскольку мы буквально возвращаемся по вычислительному графу. Мы будем знать, что более подробно рассмотрим каждое вычисление обратного прохода и тем самым выведем шаг за шагом наивный алгоритм обратного прохода.

Шаг 9


Обратный проход через последний шлюз суммирования BatchNorm-Layer. В скобках указаны размеры ввода / вывода

Напомним, что производная функции f = x + y по любой из этих двух переменных равна 1 . Это означает, что для того, чтобы направить градиент через вентиль суммирования, нам нужно только умножить на 1 . Для нашей окончательной оценки потерь мы суммируем градиент всех образцов в партии.Благодаря этой операции мы также получаем вектор градиентов правильной формы для beta . Итак, после первого шага обратного распространения ошибки мы уже получили градиент для одного обучаемого параметра: beta

Шаг 8


Далее следует обратная война

.

backpropagation - Что такое прямой и обратный проход в нейронных сетях?

Переполнение стека
  1. Около
  2. Продукты
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
  4. Талант Нанимайте технических специалистов и создавайте свой бренд работодателя
  5. Реклама Обратитесь к разработчикам и технологам со всего мира
  6. О компании

Загрузка…

    .Нейронная сеть с кодированием

    - прямое и обратное распространение | Имад Даббура

    Почему нейронные сети?

    Согласно универсальной приближенной теореме , нейронные сети могут приближать, а также изучать и представлять любую функцию при достаточно большом уровне и желаемой погрешности. Нейронная сеть узнает истинную функцию путем построения сложных представлений поверх простых. На каждом скрытом слое нейронная сеть изучает новое пространство функций, сначала вычисляя аффинные (линейные) преобразования заданных входных данных, а затем применяя нелинейную функцию, которая, в свою очередь, будет входом следующего слоя.Этот процесс будет продолжаться, пока мы не дойдем до выходного слоя. Следовательно, мы можем определить нейронную сеть как поток информации от входов через скрытые слои к выходу. Для трехуровневой нейронной сети изученная функция будет: f (x) = f_3 (f_2 (f_1 (x))) где:

    • f_1 (x) : функция, изученная на первом скрытом слое
    • f_2 (x) : функция, изученная на втором скрытом слое
    • f_3 (x) : функция, изученная на выходном слое

    Таким образом, на каждом слое мы изучаем разное представление, которое усложняется с последующими скрытыми слоями.Ниже приведен пример трехуровневой нейронной сети (входной слой не считается):

    Рисунок 1: Нейронная сеть с двумя скрытыми слоями

    Например, компьютеры не могут понимать изображения напрямую и не знают, что делать с данными пикселей. Однако нейронная сеть может построить простое представление изображения на ранних скрытых слоях, которое идентифицирует края. Получив первый вывод скрытого слоя, он может изучить углы и контуры. Учитывая второй скрытый слой, он может изучить такие части, как нос.Наконец, он может узнать идентичность объекта.

    Поскольку истина никогда не бывает линейной и представление очень важно для производительности алгоритма машинного обучения, нейронная сеть может помочь нам построить очень сложные модели и предоставить алгоритму изучение таких представлений, не беспокоясь о проектировании функций, которое требует специалистов-практиков. очень много времени и усилий, чтобы создать хорошее представление.

    Сообщение состоит из двух частей:

    1. Кодирование нейронной сети: это влечет за собой написание всех вспомогательных функций, которые позволили бы нам реализовать многоуровневую нейронную сеть.При этом я буду объяснять теоретические части, когда это возможно, и давать несколько советов по реализации.
    2. Приложение: мы реализуем нейронную сеть, которую мы закодировали в первой части по проблеме распознавания изображений, чтобы увидеть, сможет ли созданная нами сеть определить, есть ли на изображении кошка или собака, и увидеть, как она работает :)

    Этот пост будет первым в серии постов, посвященных реализации нейронной сети в numpy, включая проверку градиента , инициализацию параметров, регуляризацию L2, выпадение .. Архитектура сети влечет за собой определение ее глубины, ширины и функций активации, используемых на каждом уровне. Глубина - количество скрытых слоев. Ширина - это количество единиц (узлов) на каждом скрытом слое, поскольку мы не контролируем ни входной слой, ни размеры выходного слоя. Существует довольно много наборов функций активации, таких как , выпрямленная линейная единица, сигмоида, гиперболический тангенс и т. Д. . Исследования доказали, что более глубокие сети превосходят сети с большим количеством скрытых устройств.Поэтому всегда лучше и не повредит обучать более глубокую сеть (с уменьшающейся отдачей).

    Давайте сначала представим некоторые обозначения, которые будут использоваться в статье:

    Затем мы запишем размеры многослойной нейронной сети в общем виде, чтобы помочь нам в умножении матриц, поскольку одна из основных проблем в реализация нейронной сети позволяет получить правильные размеры.

    Два уравнения, которые нам понадобятся для реализации прямого распространения, следующие: Эти вычисления будут выполняться на каждом уровне.

    Сначала мы инициализируем матрицы весов и векторы смещения. Важно отметить, что мы не должны инициализировать все параметры равными нулю, потому что это приведет к тому, что градиенты будут равны, и на каждой итерации результат будет одинаковым, и алгоритм обучения ничего не узнает. Поэтому важно случайным образом инициализировать параметры значениями от 0 до 1. Также рекомендуется умножать случайные значения на небольшой скаляр, например 0,01, чтобы активировать блоки активации и находиться в областях, где производные функций активации не близки к нуль.{-z}) . Она превосходит сигмовидную функцию, в которой среднее значение ее выхода очень близко к нулю, что, другими словами, центрирует выход единиц активации вокруг нуля и делает диапазон значений очень маленьким, что означает более быстрое обучение. Недостатком, который он разделяет с сигмовидной функцией, является то, что градиент очень мал на хорошей части домена.

  1. Выпрямленное линейное устройство (ReLU) : g (z) = max {0, z} . Модели, близкие к линейным, легко оптимизировать.Поскольку ReLU обладает многими свойствами линейных функций, он, как правило, хорошо работает с большинством проблем. Единственная проблема заключается в том, что производная не определена при z = 0 , что мы можем преодолеть, присвоив производной 0 при z = 0 . Однако это означает, что для z ≤ 0 градиент равен нулю и снова невозможно обучиться.
  2. Линейный блок с выпрямленным током : g (z) = max {α * z, z} . Он преодолевает проблему нулевого градиента из ReLU и присваивает α , что является небольшим значением для z ≤ 0.Tx + b , а затем применить функцию активации g (z) , такую ​​как ReLU, поэлементно. Во время этого процесса мы сохраняем (кешируем) все переменные, вычисленные и используемые на каждом слое, для использования в обратном распространении. Мы напишем первые две вспомогательные функции, которые будут использоваться при прямом распространении L-модели, чтобы упростить отладку. Имейте в виду, что на каждом слое у нас могут быть разные функции активации.

    Мы будем использовать двоичную стоимость Cross-Entropy . Он использует метод логарифма правдоподобия для оценки своей ошибки.Стоимость: указанная выше функция стоимости является выпуклой; однако нейронная сеть обычно застревает на локальном минимуме и не гарантирует, что найдет оптимальные параметры. Мы будем использовать здесь градиентное обучение.

    Позволяет возвращаться информации от стоимости назад по сети для вычисления градиента. Следовательно, выполните цикл по узлам, начиная с последнего узла, в обратном топологическом порядке, чтобы вычислить производную выходных данных конечного узла по отношению к хвосту каждого ребра. Это поможет нам узнать, кто несет наибольшую ответственность за ошибку, и изменить параметры в этом направлении.i ∈ {0, 1} .

    • Сначала загрузим изображения.
    • Показать образец изображения для кошки.
    • Измените форму входной матрицы так, чтобы каждый столбец был одним примером. Кроме того, поскольку каждое изображение имеет размер 64 x 64 x 3, у нас будет 12 288 функций для каждого изображения. Следовательно, матрица ввода будет 12 288 x 209.
    • Стандартизируйте данные, чтобы градиенты не выходили из-под контроля. Кроме того, это поможет скрытым единицам иметь аналогичный диапазон значений. А пока мы разделим каждый пиксель на 255, что не должно быть проблемой.Однако лучше стандартизировать данные, чтобы иметь среднее значение 0 и стандартное отклонение 1.
     Исходные размеры: 
    --------------------
    Обучение : (209, 64, 64, 3), (209,)
    Тест: (50, 64, 64, 3), (50,) Новые размеры:
    -------------- -
    Обучение: (12288, 209), (1, 209)
    Тест: (12288, 50), (1, 50)
    Рисунок 3: Пример изображения

    Теперь наш набор данных готов к использованию и тестированию нашего реализация нейронной сети. Давайте сначала напишем функцию многослойной модели для реализации обучения на основе градиента с использованием заранее определенного количества итераций и скорости обучения.

    Далее мы обучим две версии нейронной сети, каждая из которых будет использовать разные функции активации на скрытых слоях: одна будет использовать выпрямленную линейную единицу ( ReLU ), а вторая будет использовать функцию гиперболического тангенса ( tanh ). ). Наконец, мы будем использовать параметры, полученные от обеих нейронных сетей, чтобы классифицировать обучающие примеры и вычислить уровни точности обучения для каждой версии, чтобы увидеть, какая функция активации лучше всего работает с этой задачей.

     # Настройка яркости слоев 
    Layers_dims = [X_train.shape [0], 5, 5, 1] ​​# NN с активацией tanh fn
    parameters_tanh = L_layer_model (X_train, y_train, Layers_dims, Learning_rate = 0.03, num_iterations = 3000, hidden_layers_activation_fn = "tanh") # Распечатать точность
    precision (X_test , parameters_tanh, y_test, activate_fn = "tanh") Стоимость после 100 итераций: 0,6556
    Стоимость после 200 итераций: 0,6468
    Стоимость после 300 итераций: 0,6447
    Стоимость после 400 итераций: 0,6441
    Стоимость после 500 итераций это: 0.6440
    Стоимость после 600 итераций: 0,6440
    Стоимость после 700 итераций: 0,6440
    Стоимость после 800 итераций: 0,6439
    Стоимость после 900 итераций: 0,6439
    Стоимость после 1000 итераций: 0,6439
    Стоимость после 1100 итераций: 0,6439
    Стоимость после 1200 итераций: 0,6439
    Стоимость после 1300 итераций: 0,6438
    Стоимость после 1400 итераций: 0,6438
    Стоимость после 1500 итераций: 0,6437
    Стоимость после 1600 итераций: 0 .6434
    Стоимость после 1700 итераций: 0,6429
    Стоимость после 1800 итераций: 0,6413
    Стоимость после 1900 итераций: 0,6361
    Стоимость после 2000 итераций: 0,6124
    Стоимость после 2100 итераций: 0,5112
    Стоимость после 2200 итераций: 0,5288
    Стоимость после 2300 итераций: 0,4312
    Стоимость после 2400 итераций: 0,3821
    Стоимость после 2500 итераций: 0,3387
    Стоимость после 2600 итераций: 0,2349
    Стоимость после 2700 итераций: 0 .2206
    Стоимость после 2800 итераций: 0,1927
    Стоимость после 2900 итераций: 0,4669
    Стоимость после 3000 итераций: 0,1040 «Уровень точности: 68,00%».
    Рисунок 4: Кривая потерь с функцией активации tanh
     # NN с активацией relu fn 
    parameters_relu = L_layer_model (X_train, y_train, Layers_dims, Learning_rate = 0,03, num_iterations = 3000, hidden_layers_activation_fn = "relu "49) # Распечатать точность (X_test, parameters_relu, y_test, Activation_fn = "relu") Стоимость после 100 итераций: 0.6556
    Стоимость после 200 итераций: 0,6468
    Стоимость после 300 итераций: 0,6447
    Стоимость после 400 итераций: 0,6441
    Стоимость после 500 итераций: 0,6440
    Стоимость после 600 итераций: 0,6440
    Стоимость после 700 итераций: 0,6440
    Стоимость после 800 итераций: 0,6440
    Стоимость после 900 итераций: 0,6440
    Стоимость после 1000 итераций: 0,6440
    Стоимость после 1100 итераций: 0,6439
    Стоимость после 1200 итераций: 0 .6439
    Стоимость после 1300 итераций: 0,6439
    Стоимость после 1400 итераций: 0,6439
    Стоимость после 1500 итераций: 0,6439
    Стоимость после 1600 итераций: 0,6439
    Стоимость после 1700 итераций: 0,6438
    Стоимость после 1800 итераций: 0,6437
    Стоимость после 1900 итераций: 0,6435
    Стоимость после 2000 итераций: 0,6432
    Стоимость после 2100 итераций: 0,6423
    Стоимость после 2200 итераций: 0,6395
    Стоимость после 2300 итераций: 0 .6259
    Стоимость после 2400 итераций: 0,5408
    Стоимость после 2500 итераций: 0,5262
    Стоимость после 2600 итераций: 0,4727
    Стоимость после 2700 итераций: 0,4386
    Стоимость после 2800 итераций: 0,3493
    Стоимость после 2900 итераций: 0,1877
    Стоимость после 3000 итераций: 0,3641 «Уровень точности: 42,00%».
    Рисунок 5: Кривая потерь с функцией активации ReLU

    Обратите внимание, что приведенные выше показатели точности, как ожидается, будут завышать уровни точности обобщения.

    Цель этого поста - пошагово написать код глубокой нейронной сети и объяснить при этом важные концепции. На данный момент нас особо не волнует уровень точности, так как есть множество вещей, которые мы могли бы сделать, чтобы повысить точность, о чем мы будем рассказывать в следующих публикациях. Ниже приведены некоторые выводы:

    • Даже если нейронная сеть может представлять любую функцию, она может не обучаться по двум причинам:
    1. Алгоритм оптимизации может не найти наилучшее значение для параметров желаемой (истинной) функции. .Он может застрять в локальном оптимуме.
    2. Алгоритм обучения может найти другую функциональную форму, которая отличается от предполагаемой функции из-за переобучения.
    • Даже если нейронная сеть редко сходится и всегда застревает в локальном минимуме, она все же может значительно снизить затраты и создавать очень сложные модели с высокой точностью тестирования.
    • Нейронная сеть, которую мы использовали в этом посте, представляет собой стандартную полностью подключенную сеть. Однако есть два других типа сетей:
    1. Сверточная сеть NN: где не все узлы подключены.Он лучший в своем классе для распознавания изображений.
    2. Recurrent NN: Есть соединения обратной связи, при которых выходные данные модели возвращаются в себя. Он используется в основном при последовательном моделировании.
    • Полностью подключенная нейронная сеть также забывает, что произошло на предыдущих этапах, и ничего не знает о выходе.
    • Существует ряд гиперпараметров, которые мы можем настроить с помощью перекрестной проверки, чтобы получить максимальную производительность нашей сети:
    1. Скорость обучения (α): определяет, насколько велик шаг для каждого обновления параметров.

    A. Малое α ведет к медленной сходимости и может стать очень дорогостоящим в вычислительном отношении.

    B. Большое значение α может привести к перерегулированию, при котором наш алгоритм обучения может никогда не сойтись.

    2. Количество скрытых слоев (глубина): чем больше скрытых слоев, тем лучше, но это требует больших вычислительных затрат.

    3. Количество единиц на скрытый слой (ширина): исследования доказали, что огромное количество скрытых единиц на уровне не способствует улучшению сети.

    4.Функция активации: какую функцию использовать на скрытых слоях, зависит от приложения и домена. Это процесс проб и ошибок, чтобы попробовать разные функции и посмотреть, какая из них работает лучше всего.

    5. Количество итераций.

    • Стандартизация данных поможет активам иметь одинаковый диапазон значений и избежать выхода градиентов из-под контроля.
    .

    Вперед, вперед, назад, назад и т. Д. «English Practice - Learn and Practice English Online

    Слова назад, назад, вперед, вперед, наружу, наружу и т. Д. Могут использоваться как прилагательные и наречия.

    Как прилагательные

    Когда эти слова используются как прилагательные, они не имеют окончания –s . Это означает, что мы не можем использовать прилагательные вперед, назад, наружу и т. Д. Вместо этого мы используем вперед, назад, наружу и т. Д.

    В Африке много отсталых стран. (НЕ В Африке много отсталых стран. Здесь обратное используется как прилагательное, изменяющее существительное страны.)
    В его исследованиях он на назад на . (НЕ Он отстает в учебе.)
    Вперед передачи не разрешены в регби. (НЕ Подача вперед в регби запрещена.)
    Она была замечена ехавшей в северном направлении .

    Как наречия

    Когда эти слова используются как наречия, они могут использоваться с окончанием –s или без него.В то время как формы с –s более распространены в британском английском, формы без –s обычно используются в американском английском.

    Идите вверх. ИЛИ Перейти на вверх.
    Почему вы перемещаете назад и вперед ? ИЛИ Почему вы перемещаете назад, и вперед?

    В таких выражениях, как ожидать, вперед и вперед , всегда используется форма без –s.

    Мы с нетерпением ждем вашего следующего визита.(НЕ Мы с нетерпением ждем вашего следующего визита.)

    .

    назад и вперед - определение

    Примеры предложений с «назад и вперед», память переводов

    LASER-wikipedia2AGP-карты имеют обратную и прямую совместимость в определенных пределах. .opensubtitles2Сиденья на самом деле двигались вперед и назад, они откидывались взад и вперед, hunglish Затем он тяжело дышал, и они могли видеть, как биение его сердца трясло его вперед и назад.opensubtitles2Я вижу себя застрявшим здесь навсегда, иду взад и впередEuroparl8 Плата за использование дороги была сдвинута назад и вперед в течение шести месяцев, и они все еще остаются. openubtitles2Все дело, назад и впередsopensubtitles2 вращающиеся пластины MIZANPilot следовал за ним взад и вперед.OpenSubtitles2018.v3 Он все еще раскачивался взад и вперед ... WikiMatrix А пока я крутил двигатель назад и вперед.WikiMatrixДругие приложения XDEM включают тепловое преобразование биомассы на решетке прямого и обратного действия. .MIZANКрутая, как лестница, она петляла взад и вперед по мере подъема. Openubtitles2 Вы думаете, что я собираюсь носить подносы взад и вперед весь день? OpenSubtitles2018.v3 Как будто они движутся вперед и назад одновременно. WikiMatrix Платформа вращается и движется вперед и назад по трассе с умеренной скоростью. MIZAN варьировал свои развлечения, прыгая вперед и назад через гроб. OpenSubtitles2018.v3 Но хуже всего было, когда он начал расхаживает взад и вперед, напыщенный и самоуверенный.

    Показаны страницы 1. Найдено 1080 предложения с фразой backward and forward.Найдено за 41 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 0 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки.Они поступают из многих источников и не проверяются. Имейте в виду.

    .

    Смотрите также