Датчик холла принцип действия


принцип работы, как проверить своими руками, применение

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т.д.) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя. Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения Uхолла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота). Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.
Внешний вид цифрового датчика Холла

Как правило, большинство датчиков представляет собой компонент с тремя выводами, на два из которых подается двух- или однополярное питание, а третий является сигнальным.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.
https://www.youtube.com/watch?v=fmLs9WsKx3I

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Внешний вид датчика Холла для СБЗ ВАЗ 2110

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.
Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ
  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

Датчик Холла - что это? Описание, принцип действия

Полное технически грамотное название – датчик положения на эффекте Холла.

Принцип действия этого устройства прост: помещая любой проводник с постоянным током в электромагнитное поле, в нём образуется разность потенциалов поперечного типа. Напряжение, наблюдаемое в этом проводнике, назвали в честь изобретателя – холловское.

В двигателях внутреннего сгорания датчик Холла нашёл большое применение. В распределителях зажигания на карбюраторных автомобилях он подавал сигнал момента искрообразования. Затем, на более новых моделях двигателей, его начали ставить у распределительного и коленчатого валов, где он фиксировал угол положения.

Физическое явление образования на гранях пластины напряжения открыл физик Американского Балтиморского Университета Э. Холл в 1879 году. Он поместил полупроводниковую пластину в магнитное поле и к её узким граням подвёл ток. А на широких гранях появлялось напряжение (от десятков микровольт до многих сотен милливольт).

Широкое применение устройств, с использованием эффекта Холла, началось с 1955 года. Именно в это время начали массово производиться полупроводниковые плёнки.

В семидесятых годах прошлого века начала бурно развиваться микроэлектроника. Датчик приобрёл миниатюрную форму, в котором помещался чувствительный элемент, магнит и микросхема. У него появилось три преимущества: минимизация; не изменяется момент измерения при изменении оборотов двигателя; при повороте ключа в выключателе зажигания электрический сигнал имеет определённую и стабильную величину, а не всплескообразную. Это положительный нюанс при работе в электрической сети автомобиля.

Недостатки датчика

Но у датчика Холла есть недостатки. На нём сильно сказываются электромагнитные помехи цепи питания. Также он менее надёжен магнитоэлектрического датчика и дороже его в производстве.

Работает датчик очень просто. Металлическая пластина (у бегунка или штифты распределительного и коленчатого вала) проходит через зазор датчика, шунтируется магнитный поток. На микросхеме индуктивность нулевая. Выходя из датчика, сигнал имеет большую степень и равен запитывающему напряжению.

Техническое состояние датчика Холла никогда нельзя проверять контрольной лампой. Используйте осциллограф, если он снят с автомобиля, или мультиметр – непосредственно на двигателе. При проверке отсоедините колодку с проводами, соединяющую датчик с цепью. Ключ выключателя зажигания должен быть вынут.

  • < Назад
  • Вперёд >

принцип работы, применение, принципиальная схема, подключение

Датчики стали незаменимой частью жизни людей. Они делают ее проще. Датчики света, звука, движения управляют разными техническими системами. Ту же функцию – управление системами выполняют датчики на основе эффекта Холла (далее ДХ – датчик Холла). Далее будет рассмотрено устройство и особенности датчика Холла, разновидности контроллера, его применение, а также принцип работы.

Описание и применение

Контроллер, в основе которого лежит действие эффекта Холла, относится к датчикам магнитного типа. Они выдают электрический сигнал в зависимости от изменения магнитного поля вокруг них.

Эффект Холла состоит в появлении напряжения в проводнике при прохождении через него электрического тока. Электрический ток меняет магнитное поле, за ним меняется индукция этого поля, в итоге создается разность потенциалов.

Регистр Холла работает следующим образом:

  • вокруг него создается магнитное поле, активирующее контроллер;
  • при внесении в поле какого-либо объекта, оно выходит за первоначальные границы; датчик этот процесс фиксирует и генерирует напряжение, пропорциональное изменению.

Напряжение называется напряжением Холла.

На основе датчика Холла собирают контроллеры приближения, движения, переключатели и другие полезные в быту и промышленности устройства.

Виды, устройство и принцип действия

Всего выделяют два вида датчиков на основе эффекта Холла. Первые – цифровые, вторые – аналоговые. Они значительно отличаются друг от друга в плане конструкции и принципа функционирования.

Цифровые

Цифровые регистры имеют два устойчивых положения: ноль или единица – то есть они срабатывают при определенной величине изменения магнитного поля. В основе таких датчиков лежит устройство под названием триггер Шмитта, которое имеет два устойчивых состояния: логический ноль и логическая единица.

Контроллеры подобного типа делятся на три вида:

  1. Униполярные.
  2. Биполярные.
  3. Омниполярные.

Каждый из этих видов далее будет подробно рассмотрен.

Униполярные

Контроллеры подобного вида работают только в том случае, если к ним прикладывается магнитное поле положительной полярности от южного полюса. Только при этом условии происходит срабатывание и отпускание контроллера.

Биполярные

Эти цифровые датчики работают под действием магнитного поля и южного, и северного полюса. Их особенность состоит в том, что срабатывают они под действием поля от южного полюса, а отпускаются под действием северного полюса.

Омниполярные

Уникальность этих контроллеров Холла состоит в том, что они могут включаться и выключаться под действием поля от любого полюса.

Аналоговые

В отличие от цифровых аналоговые датчики способны выдавать на выходе не два стабильных уровня сигнала, а бесконечное множество. Их принцип работы основан на преобразовании величины индукции поля в напряжение.

Конструкция этих устройств содержит элемент Холла (сам контроллер) и усилитель сигнала.

Применение

И аналоговые (линейные), и цифровые контроллеры нашли широкое применение во всех сферах жизни.

Линейные

Из-за большого количества уровней выходного напряжения такие контроллеры часто применяют в измерительной технике.

Датчик тока

Регистр тока на ДХ сделать очень просто. Необходимо установить лишь правильный преобразователь, который из напряжения, создаваемого в результате прохождения тока через проводник, будет получать ток. Ток с напряжением связаны законом Ома.

Тахометр

Тахометр измеряет частоту вращения чего-либо. Например, вала. Сделать такое устройство на ДХ очень просто. Достаточно установить датчик рядом с вращающимся объектом, а на сам объект повесить небольшой магнит.

Как только магнит будет проходить рядом с датчиком, индукция поля будет изменятся, как и величина напряжения на выходе соответственно.

По изменению последней можно судить о скорости вращения вала.

Датчик вибраций

На основе ДХ можно сконструировать простой регистр вибрации, который будет реагировать на изменение магнитного поля в результате микроперемещений магнита, создающего поле для проводника с током.

Детектор ферромагнетиков

Ферромагнетики – магнитоактивные вещества. Они искажают магнитное поле планеты. По величине этого искажения можно определить, насколько сильный тот или иной ферромагнетик.

Как измерить это искажение? Это можно сделать с помощью ДХ. Если внести в поле магнита, создающего напряжение в проводнике, магнитный материал (ферромагнетик), то поле изменит индукцию и это повлияет на создаваемую разность потенциалов.

Датчик угла поворота

ДХ способны измерять угол вращения какого-то либо объекта. Например, если на нем установлены магнит и контроллер Холла, то по величине индукции (близости магнита к датчику) можно определить угол вращения.

Потребуется лишь правильно определить зависимость между индукцией и углом. В этом поможет университетский курс физики и механики.

Бесконтактный потенциометр

Напряжение с током связаны по закону Ома через сопротивление. Зная ток через проводник и напряжение, не сложно рассчитать подключенное к проводнику сопротивление. Этот факт позволяет строить на ДХ бесконтактные потенциометры.

ДХ в бесколлекторном двигателе постоянного тока

Подобные контроллеры часто применяются в бесколлекторных двигателях в качестве измерителей угла поворота.

Датчик расхода

Датчик расхода на аналоговом ДХ устроен так, что объем пропущенного через этот датчик вещества пропорционален изменению магнитной индукции поля вокруг него.

Датчик положения

Чтобы собрать датчик положения на ДХ, нужно к отслеживаемой цели подключить магнитную пластину. Когда эта пластина будет менять положение относительно магнита в ДХ, поле будет менять свой состав и по изменению индукции этого поля можно будет определить положение объекта.

Цифровые

Такие контроллеры применяются в электронике и промышленности для управления включением и выключением, например, станков с численным программным управлением, а также для регулирования работы автоматизированных систем.

Датчики

На цифровых ДХ собирают различные контроллеры, способные отслеживать изменение различных величин и реагировать на изменения.

Контроллер частоты вращения

Контроллеры Холла, измеряющие частоту вращения чего-либо, называются энкодерами. Обычно их несколько устанавливается на определенную позицию, через которую проходит несколько магнитов с вращающегося объекта.

Как только магнит пересекает первый датчик, последний выдает на выходе уровень логической единицы. С другими контроллерами аналогично. Момент появления логической единицы на одном из датчиков позволяет оценить частоту вращения объекта.

Контроллер системы зажигания авто

Система зажигания устроена таким образом, что имеет два устойчивых состояния: включено-выключено. Такие же устойчивые логические уровни имеют цифровые ДХ. Соединить эти приборы в одно устройство не составляет труда: к системе зажигания присоединяется магнитная пластина.

Когда система находится в положении «включено», пластина пересекает магнитное поле ДХ и разность потенциалов в проводнике контроллера изменяется. Этим изменением можно управлять различными системами авто.

Контроллер положения клапанов

Если к клапану подсоединить магнитную пластину, а ее расположить рядом с контроллером Холла, то при открытии (или, наоборот, закрытии) клапана индукция поля и, как следствие, напряжение в проводнике изменится, а это изменение переведет контроллер в одно из логических состояний (ноль, единица).

Так можно фиксировать открывание и закрывание клапанов.

Контроллер бумаг в принтере

Наличие бумаги в принтере можно фиксировать точно так же, как и положение клапанов. Есть флажок, который устанавливается и пересекает поле постоянного магнита ДХ, если в принтер поступает бумага.

Устройства синхронизации

Датчики синхронизации активно применяются в автомобилестроении, где они регулируют время и объем подачи топлива, углы опережения зажигания и поворота распределительного вала, а также других показателей.

Такие датчики представляют собой намагниченный сердечник с медной обмоткой, на концах которой фиксируют разность потенциалов.

Счетчик импульсов

С помощью эффекта Холла можно считать поступающие в проводник импульсы. Импульс – сигнал высокого уровня. Соответственно, есть сигнал низкого уровня (обычно это 0). Если импульс поступает на проводник, то на его концах создается разность потенциалов под действием магнитного поля. Когда импульс пропадает, разность потенциалов тоже исчезает. По скорости появления-пропадания напряжения в проводнике можно судить о количестве импульсов: зная время и скорость можно определить количество.

Блокировка дверей

Магнит контроллера располагается на двери машины, например, а сам контроллер – на дверной коробке. Как только замок, не снятый с сигнализации, попытается кто-то открыть и потянет на себя ручку двери, подключенная система заблокирует двери и предотвратит доступ в машину. Так и работает блокировка дверей с применением ДХ.

Вместо системы блокировки дверей к датчику можно подключить сирену или другую сигнализацию.

Измеритель расхода

Расходометр на ДХ устроен таким образом, что каждое изменение магнитного потока, фиксируемое контроллером, равняется определенной порции прошедшего вещества (жидкости, например).

Бесконтактное реле

Бесконтактные реле на ДХ так устроены, что при изменении магнитной индукции поля вокруг проводника на нем меняется напряжение и это изменение разности потенциалов провоцирует переключение реле.

Детектор приближения

Контроллер приближения на цифровом ДХ аналогичен контроллеру на линейном ДХ с той лишь разницей, что цифровой выдает только два уровня сигнала – высокий и низкий – а аналоговый –бесконечное множество, то есть, например, цифровым контроллером можно только включить и выключить свет, а аналоговым включить на определенную величину, сделать свет ярче или тусклее, а потом выключить.

Какие функции выполняет в смартфоне

Когда человек подносит смартфон близко к уху, экран телефона гаснет для предотвращения случайных нажатий. Как это удалось реализовать разработчикам? При помощи цифрового датчика приближения, основанного на эффекте Холла.

Как изготовить своими руками

Чтобы сделать простейший ДХ своими руками, понадобится:

  1. Ферритовое кольцо.
  2. Проводник для тока.
  3. Элемент Холла (микросхема ACS 711, например).
  4. Дифференциальный усилитель.

В кольце необходимо пропилить зазор, в котором расположится элемент Холла. Его потребуется подключить к дифференциальному усилителю, который представляет особой ОУ с отрицательной обратной связью.

Если изменение индукции – это своеобразная «ошибка», то ОУ выступает в роли усилителя ошибки, как показано на принципиальной схеме подключения на рисунке 1.

Рис. 1. Принципиальная схема подключения элемента Холла.

Вместо усилителя можно установить микроконтроллер и через ограничительный резистор подключить его к выводу микросхемы ACS 711 в режиме АЦП. Тогда к другому выводу микроконтроллера можно подключить полевой транзистор и получится генератор импульсов, который можно использовать в режиме широтно-импульсной модуляции, например.

Преимущества и недостатки

К преимуществам ДХ можно отнести:

  1. Многофункциональность. Контроллеры Холла, как описано выше, могут играть роль десятков видов датчиков.
  2. Надежность. Не подвержены износу т.к. не имеют движущихся частей. На их работе не влияет ни влага, ни пыль (вибрация в меньшей степени).
  3. Простота. Практически не требует обслуживания.

Среди недостатков ДХ выделяют:

  1. Низкий радиус действия. Обычно ДХ не работает на расстоянии больше 10 см. В противном случае придется использовать очень сильный магнит.
  2. Сложно обеспечить стабильность измерений. Из-за постоянно меняющегося магнитного поля точность измерений ДХ всегда будет немного колебаться.

Главный недостаток ДХ – температурная нестабильность.

Чем выше температура, тем быстрее движутся заряды в проводнике, тем чувствительнее датчик ко всем колебаниям магнитного поля.

Датчик Холла | Виды, принцип работы, как проверить

Что такое датчик Холла

Датчики Холла представляют из себя твердотельные радиоэлементы, которые становятся все более популярными в радиолюбительской среде и разработке радиоэлектронных устройств. Они применяются в датчиках измерения положения, скорости или направленного движения. Они все чаще заменяют собой путевые выключатели и герконы. Так как такие датчики являются абсолютно герметичными и представляют из себя простой радиоэлемент, то они не боятся вибрации, пыли и влаги. То есть по сути датчик Холла простыми словами – это радиоэлемент, который реагирует на внешнее магнитное поле.

Эффект Холла

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странный эффект. Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я пометил гранями ABCD.

Он пропускал постоянный ток через грани D и B. Потом поднес перпендикулярно пластинке постоянный магнит и обнаружил напряжение на гранях А и C!  Этот эффект и был назван в честь этого великого ученого. Основной физический принцип данного эффекта был основан на силе Лоренца. Поэтому радиоэлементы, основанные на эффекте Холла, стали называть датчиками Холла. 

Но здесь один маленький нюанс. Дело в том, что напряжение Холла даже при самой большой напряженности магнитного поля будет какие-то микровольты. Согласитесь, это очень мало. Поэтому, помимо самой пластинки в датчик Холла устанавливают усилители постоянного тока, логические схемы переключения, регулятор напряжения а также триггер Шмитта. В самом простом переключающем датчике Холла все это выглядит примерно вот так:

где

Supply Voltage – напряжение питания датчика

Ground – земля

Voltage Regulator – регулятор напряжения

А – операционный усилитель

Hall Sensor – собственно сама пластинка Холла

Output transisitor Switch – выходной переключающий транзистор (транзисторный ключ)

Линейные (аналоговые) датчики Холла

В линейных датчиках напряжение Холла (напряжение на гранях А и С) будет зависеть от напряженности магнитного поля. Или простыми словами, чем ближе мы поднесем магнит к датчику, тем больше будет напряжение Холла. Это и есть прямолинейная зависимость.

В линейных датчиках Холла выходное напряжение берется сразу с операционного усилителя. То есть в линейных датчиках вы не увидите триггер Шмитта, а также выходного переключающего транзистора. То есть все это будет выглядеть примерно вот так:

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку.

Теоретически, если подавать ну очень сильный магнитный поток на датчик Холла, то напряжение Холла будет бесконечно большим? Как бы не так). Выходное напряжение будет лимитировано напряжением питания. То есть график будет выглядеть примерно вот так:

Как вы видите, до какого-то момента у нас идет линейная зависимость выходного напряжения датчика от плотности магнитного потока. Дальнейшее увеличение магнитного потока бесполезно, так как оно достигло напряжения насыщения, которое ограничено напряжением питанием самого датчика Холла.

Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого провода, например, токовые клещи.

Существуют также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах, называют линейными, так как напряжение на датчике Холла прямо пропорционально плотности магнитного потока.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Как только наступила  эра цифровой элек троники, в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Самый простой датчик Холла на триггере Шмитта мы уже рассмотрели выше и он выглядит вот так:

По сути такой датчик имеет только два состояние на выходе. Либо сигнал есть (логическая единица), либо его нет (логический ноль). Гистерезис на триггере Шмитта просто устраняет частые переключения, поэтому в цифровых датчиках Холла он используется всегда.

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

Униполярные

Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. К примеру, подносим южный полюс магнита и датчик сработает. На северный магнитный полюс он реагировать не будет.

Биполярные

Подносим магнит одним полюсом – датчик сработает и будет продолжать работать даже тогда, когда мы уберем магнит от датчика. Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Как проверить датчик Холла

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

Судя по даташиту, на первую ножку подаем плюс питания, на вторую – минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

Для этого соберем простейшую схему: светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и сам датчик Холла.

Теперь цепляемся к нашей схеме от блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс питания – на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил красным бумажным ценником один из полюсов магнита. Какой именно – я не знаю, так как не имею компаса, с помощью которого можно было бы узнать, где северный полюс, а где южный.

Как только я поднес магнит “красным” полюсом к датчику холла, то у меня светодиод сразу потух.

Переворачиваю магнит другим полюсом, подношу его к датчику Холла и вуаля!

Если магнит не переворачивать, то есть не менять полюса, то светодиод также останется потухшим, потому что датчик биполярный.

А вот и видео работы

Как вы видите на видео, мы с помощью магнита управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть – единичка, сигнала нет – ноль. То есть светодиод горит – единичка, светодиод потух – ноль.

Применение датчиков Холла

В настоящее время область применения датчиков Холла очень обширна и с каждым годом становится все шире и шире. Вот основные применения:

Применение линейных датчиков

  • датчики тока
  • тахометры
  • датчики вибрации
  • детекторы ферромагнетиков
  • датчики угла поворота
  • бесконтактные потенциометры
  • бесколлекторные двигатели постоянного тока
  • датчики расхода
  • датчики положения

Применение цифровых датчиков

  • датчики частоты вращения
  • устройства синхронизации
  • датчики систем зажигания автомобилей
  • датчики положения
  • счетчики импульсов
  • датчики положения клапанов
  • блокировка дверей
  • измерители расхода
  • бесконтактные реле
  • детекторы приближения
  • датчики бумаги (в принтерах)

Заключение

Чем же так хороши датчики Холла? Если соблюдать нормальные рабочие значения напряжения и тока, то теоретически датчика хватит на бесконечное число включений-выключений. Они не имеют электромеханического контакта, который бы изнашивался, в отличие от геркона  и электромагнитного реле. В настоящее время они уже почти полностью заменили герконы.

Датчик Холла - назначение, принцип действия

На примере датчика Холла, применяемого в бесконтактной системе зажигания автомобилей ВАЗ 2108, 2109, 21099.

Назначение датчика Холла

Датчик Холла предназначен для определения момента искрообразования в бесконтактной системе зажигания (БСЖ) автомобиля.

Принцип действия датчика Холла

Принцип действия датчика основан на эффекте Холла, когда магнитное поле проводника изменяется при прохождении в нем специального экрана с прорезями.

На практике это выглядит так: датчик Холла автомобилей ВАЗ 2108, 2109, 21099 установлен на опорной пластине трамблера и состоит из двух частей – магнита и элемента Холла с усилителем. На датчик Холла подается напряжение с коммутатора (вывод 5) через токовый красный провод. «Масса» так же с коммутатора – бело-черный провод с вывода 3. Магнит создает магнитное поле, элемент Холла принимает его, создает напряжение, которое усиливает усилитель и через зеленый импульсный провод напряжение подается на коммутатор (вывод 6).

Для изменения магнитного поля применяется экран с четырьмя прорезями, который вращается вместе с валом распределителя зажигания (трамблера) проходя между магнитом и принимающей частью датчика Холла. При прохождении в пазу датчика прорези экрана магнитное поле имеет определенную величину и соответственно датчик выдает на коммутатор электрический ток определенного напряжения (9-12 В). При прохождении в пазу датчика зубца экрана магнитное поле экранируется и не поступает на приемник датчика, при этом напряжение, поступающее на коммутатор, падает (0-0,5 В).

Соответственно коммутатор прерывает электрический ток, подающийся на катушку зажигания, магнитное поле в ней резко сжимается и, пересекая витки обмотки, производит ЭДС 22-25 кВ (ток высокого напряжения). Ток через бронепровода попадает на распределитель трамблера и далее на свечи зажигания, производя разряд, поджигающий топливную смесь. Прохождение каждого из четырех зубцов экрана в прорези датчика соответствует такту сжатия в одном из четырех цилиндров двигателя.

Примечания и дополнения

— На эффекте Холла основан принцип действия еще нескольких автомобильных датчиков, например, датчика скорости инжекторных ВАЗ 21083, 21093, 21099.

TWOKARBURATORS VK -Еще информация по теме в нашей группе ВКонтакте
TWOKARBURATORS DZ -и в Яндекс Дзен

Еще статьи по датчикам автомобилей ВАЗ 2108, 2109, 21099

— Проверка датчика Холла

— Датчик указателя температуры охлаждающей жидкости автомобилей ВАЗ 21083, 21093, 21099

— Принцип действия бесконтактной системы зажигания

— Схема «устройство датчика кислорода ЭСУД ВАЗ 21083, инжектор»

— Датчик давления масла ВАЗ 2108, 2109, 21099

— Датчик уровня тормозной жидкости ВАЗ 2108, 2109, 21099

— Датчик уровня топлива ВАЗ 2108, 2109, 21099

Датчик холла принцип работы и какова его роль в системе зажигания?

На блоге мы уже рассматривали различные системы зажигания, в частности, бесконтактных, у которых механический прерыватель в трамблёре заменён хитрым датчиком. О нём и поговорим, о датчике Холла, так его называют. Датчик Холла принцип работы его заключается в том, что он дает отсечку в нужной точке для поджига рабочей смеси в цилиндре, но давайте по порядку.

[contents]

Датчик Холла принцип работы

Как мы видим, наш сегодняшний герой выполняет крайне ответственное задание в системе зажигания, но пока что он остаётся для нас тёмной лошадкой. Исправим данный недостаток. Итак, датчик холла что это и как работает?

Для начала немного истории. Своё название это устройство получило благодаря одному из сотрудников балтиморского университета Э. Холла, который в конце ХIХ века открыл эффект возникновения напряжения на краях полупроводниковой пластины при изменении магнитного поля, в котором она находится.

Другими словами, если специальную пластинку поместить в место, где будет периодически проскакивать магнит или что-либо, что может изменить имеющееся магнитное поле, к примеру, металлический предмет, то на её краях будут появляться импульсы напряжения, а они в свою очередь могут использоваться электроникой в качестве сигналов к действию.

Одно из ключевых преимуществ подобных датчиков – отсутствие каких-либо механически контактирующих элементов, а это значит, что нет износа и, как следствие, продолжительный срок безотказной работы узла.

Надо отметить, что эффект Холла стал массово использоваться в промышленности лишь во второй половине ХХ века, когда полупроводниковые материалы стали доступными.

Своё место датчики Холла нашли и в автомобилях, а если точнее – в двигателях, где их полезные свойства пригодились в системах зажигания.

Устанавливается такое устройство в корпус трамблёра. Внутри него, как мы уже знаем, имеется вал, именуемый в литературе валом прерывателя-распределителя.

В определённом месте на этом валу закреплена магнитопроводящая пластина, имеющая столько сердечников, сколько и цилиндров в силовом агрегате.

 

Вращаясь синхронно с распредвалом и коленвалом, она в момент прохождения одного из сердечников мимо датчика, возбуждает в нём импульс электрического напряжения, который затем поступает в коммутатор системы зажигания, где используется для управления работой катушки зажигания. Этот импульс является отправной точкой для генерации искры свечи.

Система зажигания сгенерирует искру именно в тот момент, когда необходимо поджечь топливно-воздушную смесь – ни на мгновение раньше, ни на мгновение позже, иначе мотор просто-напросто не сможет нормально работать. Такой вот нехитрый алгоритм.

Как проверить датчик Холла?

Как и любой другой электронный элемент, наш герой тоже может выходить из строя, и узнать об этом мы можем по плохой работе двигателя авто, а именно:

  • мотор сложно завести или он вообще отказывается стартовать;
  • на холостом ходу заметны перебои или просадки оборотов;
  • при движении машина внезапно глохнет;
  • на высоких оборотах авто начинает дёргать.

Конечно же, не факт, что эти симптомы связаны именно с датчиком Холла, но, тем не менее, проверить его нужно. Сделать это можно своими силами.

  1. Попросите у друзей или где-нибудь на время проверки, переставьте и убедитесь в том, является ли причиной ваших бед именно датчик Холла;
  2. Просто замерьте напряжение на выходе, оно должно быть в точке разрыва 0,4 В, а в точке прохода пластины — 11В.;
  3. Разобрать трамблер, провод высокого напряжения с надсвечником и свечей положите на корпус автомобиля с гарантией контакта на минус. Включите зажигание и замкните контакты 6 и 3 на панели коммутатора. Если искра на контактах свечи зажигания появится, то ваш датчик вышел из строя.

https://www.youtube.com/watch?v=loxwayrjpVM

Но все-таки наиболее простой и примитивный способ – замена датчика на заведомо исправный. На видео ниже, видно как это просто.

 

Все-таки проверка требует квалифицированного подхода, если вы им не обладаете, не стоит экспериментировать. Надежно и с гарантией успеха лучше обратиться к специалистам и сделать все как положено.

Пожалуй, вот так кратко, датчик Холла принцип работы и его значение вам понятны. Надеюсь, вы почерпнули минимальные полезные знания из этой статьи.

На этом разрешите откланяться и напомнить, читайте свежие и интересные публикации, появляющиеся на блоге, поможет подписка. До скорых встреч!

 

Принцип работы датчика скорости

- Инструментальные средства

Вращающееся оборудование требует измерения скорости для таких функциональных систем, как управление, мониторинг и безопасность. Для обеспечения безопасной эксплуатации особенно важно контролировать частоту вращения ротора газотурбинных двигателей.

Принцип работы и характеристики индуктивного датчика :

Индуктивный датчик, также известный как датчик магнитного датчика, во время работы из-за индуктивного эффекта. Катушка датчика вырабатывает колебательное напряжение.(один вид сигнала синусоидальной формы (∼) переменного напряжения).

Когда спусковое колесо с зубьями проходит на достаточно близком расстоянии (G) от полюсного штифта датчика, магнитное поле, окружающее катушку, изменяется. В результате изменения магнитного поля в катушке индуцируется напряжение, которое пропорционально силе и скорости изменения магнитного поля. Одно полное колебание создается для каждого зуба, проходящего рядом со стержнем полюса датчика. На рисунке показаны основные составные части и форма генерируемого сигнала индуктивного датчика.Электрическое сопротивление катушки обычно находится в диапазоне от 500 Ом до 1,500 Ом. Сигнал напряжения, создаваемый датчиком, зависит от скорости спускового колеса и количества витков в катушке.

Детали датчика скорости:

  1. Корпус датчика
  2. Провода выходного сигнала
  3. Коаксиальная защита с покрытием
  4. Постоянный магнит
  5. Индуктивная катушка
  6. Штифт опоры
  7. Спусковое колесо
  8. Воздушный зазор
Принцип работы датчика Холла:

В отличие от индуктивных датчиков, выходной сигнал датчика Холла не зависит от скорости изменения магнитного поля.Создаваемое выходное напряжение обычно находится в диапазоне мВ и дополнительно усиливается встроенной электроникой, установленной внутри корпуса датчика.

На рисунке показана типичная конструкция датчика Холла . Конечный сигнал выходного напряжения обычно имеет цифровую форму импульсов (квадратная форма). Выходной сигнал датчика может быть как положительным, так и отрицательным с пиковым напряжением, обычно до 5 В или 12 В, в зависимости от типа встроенной электроники и требований используемой системы.Амплитуда выходного сигнала остается постоянной, только частота увеличивается пропорционально оборотам. В отличие от индуктивных датчиков, которые сами по себе генерируют сигнал напряжения, датчики на эффекте Холла должны дополнительно получать внешнее напряжение, необходимое для встроенной электроники. Обычное напряжение питания (+ Vcc) составляет в основном 5 В, но в некоторых случаях может составлять 12 В.

Детали датчика скорости:

  1. Корпус датчика
  2. Выходные провода (+ Vcc, −Vcc и сигнальный)
  3. Встроенная электроника
  4. Постоянный магнит
  5. Устройство на эффекте Холла
  6. Спусковое колесо
  7. Воздушный зазор
Индуктивный датчик Процедура диагностики и тестирования:

  1. Отключите датчик и убедитесь, что электрическое сопротивление индуктивной катушки составляет примерно от 500 Ом до 1.500 Ом. Если значение показания резко отличается, включая ноль или бесконечность, замените датчик. (Также см. Руководство поставщика для определения сопротивления)
  2. Проверьте размер воздушного зазора (G) между датчиком и спусковым колесом по манометру, значение должно быть: G ≈ 0,8 - 1,5 мм (0,03 - 0,06 дюйма). (Также см. Руководство поставщика для получения информации)
  3. Проверить чистоту штифта датчика (иногда может иметься металлическая стружка).
  4. Проверьте целостность и состояние проводов, разъемов, клемм и состояние экрана.
Процедура диагностики и тестирования датчика Холла:

  1. Проверить подачу питания на датчик. Обычное напряжение питания составляет 5 В (в некоторых случаях может быть 12 В). (Также см. Руководство поставщика)
  2. Проверьте размер воздушного зазора (G) между датчиком и спусковым колесом, значение должно быть: G ≈ 0,8 - 1,5 мм (0,03 - 0,06 дюйма). (Также см. Руководство поставщика)
  3. Проверьте отсутствие обрывов и состояние проводов, разъемов и клемм.
  4. Проверить чистоту штифта датчика (иногда может иметься металлическая стружка).
  5. Проверить наличие выходного сигнала при вращении колеса.

ПРИМЕЧАНИЕ: В отличие от индуктивных датчиков, в датчике Холла разъем должен быть вставлен, поскольку необходим источник питания для встроенных электронных компонентов, которые находятся внутри датчика.

Принцип дифференциального эффекта Холла:

Эффект Холла (названный в честь его первооткрывателя) использует тот факт, что магнитное поле генерирует напряжение в элементе холла.Его уровень не зависит от скорости его изменения. Датчики включают в себя необходимый магнит (M) и двойной элемент Холла (DH). При прохождении профиля магнитное поле изменяется, создавая тем самым напряжение сигнала внутри элемента Холла. Здесь важно учитывать, что сигнал не затухает на низкой скорости. В принципе используется двухчиповый элемент Холла, а в усилителе сигнала (A) используется только разница между ними. Затем он усиливается, чтобы обеспечить выходной сигнал прямоугольной формы мощности.

Преимущество датчиков на основе дифференциального эффекта Холла: По своей природе этот принцип дифференциала компенсирует вибрации объекта.И это уменьшает влияние внешнего магнитного поля рассеяния. Оба важных аспекта для надежного сигнала.

Материал мишени : Допускается любая стандартная сталь, за исключением нержавеющей стали или любого другого немагнитного материала. Однако пазы в стальном профиле могут быть заполнены таким материалом или стальным болтом, вставленным в немагнитную деталь.

Целевой профиль: Часто используется стандартное зубчатое колесо, так как его легко достать и установить на вал.Разъемная шестерня должна иметь разделение внизу между зубьями. Пазы, вырезанные в стальном валу или другом роторе, также дают четкий и четко определенный сигнал. Но нужно следить за тем, чтобы поверхность и края были гладкими. В противном случае датчик с его резким разрешением мог бы отреагировать на царапины или другие неровности. Однако необходимо следить за правильным расположением пазов, отверстий или болтов на роторе. Неправильные расстояния, приводящие к колебаниям в измерениях скорости. Шестигранные головки винтов могут привести к неравномерному разделению импульсов.Паз или что-то подобное в головке винта может вызвать множественные импульсы.

Одноканальный монитор скорости:

Измерение основано на частоте последовательности импульсов, представляющей скорость. Базовая величина - это время между одним или несколькими импульсами. Автоматическая функция определяет это число, чтобы поддерживать минимальный период времени для каждого измерения, которое нужно продлить. Этот минимум времени можно запрограммировать на 5 миллисекунд или более, таким образом устанавливая соответствующее усреднение и стабилизацию измерений.Соответствующее значение скорости, выраженное в оборотах в минуту, по которому считываются дисплей, цепь аварийной сигнализации и аналоговый выход, вычисляется на основе этих измерений. Этот процесс дополнительно учитывает запрограммированные данные приложения (соотношение между скоростью машины и частотой сигнала).

Схема подключения:

Расчет частоты:

Коэффициент станка = Число зубьев x Передаточное число / 60

Частота = Диапазон в об / мин x Фактор машины

Как установить датчик скорости:

Когда первичный двигатель остановился, поверните зонд, пока он не коснется внешнего диаметра шестерни.Если у звукоснимателя есть резьба 5 / 8-18, один поворот на 360 ° против часовой стрелки переместит его на 0,0555 дюйма (1,41 мм). Метрический датчик будет перемещаться на 1,5 мм за оборот. Если у звукоснимателя есть монтажная резьба 3 / 4-20, он будет выдвигаться на 0,050 дюйма (1,27 мм) за оборот. Выкрутите количество, необходимое для желаемого зазора. Если возможно, медленно поверните шестерню на 360 °, чтобы проверить зазор подборщика. Когда зазор установлен, надежно затяните контргайку на корпусе или кронштейне, чтобы подборщик не мог повернуться внутрь или наружу.

Автор статьи:
Ashish Agrawal
.

Индуктивные датчики и датчики числа оборотов на эффекте Холла. Объяснение

Индуктивные датчики числа оборотов и датчики на эффекте Холла в современных транспортных средствах используются в основном для измерения частоты вращения и определения положения коленчатого или распределительного вала в системах управления двигателем, а также для измерения скорости (об / мин) двигателя. колеса в системах ABS, ESP и т.д.

Датчики частоты вращения обычно бывают холловского или индуктивного типа. Работа этих датчиков во всех случаях принципиально схожа, хотя конструкция может варьироваться в зависимости от типа датчика, его предполагаемого использования или приложения производителя.

Принципы работы и технические характеристики индуктивного датчика

Индуктивный датчик, также известный как датчик магнитного датчика, во время работы в результате индуктивного эффекта в катушке датчика создает колебательное напряжение, то есть один вид сигнала синусоидальной формы (~ напряжение переменного тока).

Когда спусковое колесо с зубьями проходит на достаточно близком расстоянии (G) от полюсного штифта датчика, магнитное поле, окружающее катушку, изменяется.В результате изменения магнитного поля в катушке индуцируется напряжение, которое пропорционально силе и скорости изменения магнитного поля. Одно полное колебание создается для каждого зуба, проходящего рядом со стержнем полюса датчика. На рис.1 показаны основные составные части и форма генерируемого сигнала индуктивного датчика.

Рисунок 1. Индуктивный датчик:
1. Корпус датчика, 2. Провода выходного сигнала, 3. Защита с коаксиальным покрытием
4.Постоянный магнит, 5. Индуктивная катушка, 6. Штифт полюса,
7. Пусковое колесо, G. Воздушный зазор

В зависимости от приложения производителя и типа датчика электрическое сопротивление катушки обычно находится в диапазоне от 500 Ом до 1 500 Ом. В некоторых крайних случаях самое низкое значение может составлять около 200 Ом, а в некоторых случаях максимальное значение может достигать 2500 Ом.

Сигнал напряжения, создаваемый датчиком, зависит от скорости спускового колеса и количества витков в катушке, поэтому выходное напряжение можно ожидать от 1 В до 2 В, например, во время запуска двигателя, но в случаях с более высокими оборотами в минуту, можно ожидать большего.Сигнал выходного напряжения, создаваемый датчиком, является слабым, то есть низким уровнем энергии, поэтому он может легко ухудшаться другими внешними более сильными сигналами, такими как, например, система зажигания. По этой причине, чтобы исключить внешние воздействия, сигнальные провода от датчика к блоку управления обычно экранированы с помощью типа защиты с коаксиальными проводами с покрытием.

Принципы работы и технические характеристики датчика Холла

В отличие от индуктивных датчиков, выходной сигнал датчика Холла не зависит от скорости изменения магнитного поля.Создаваемое выходное напряжение обычно находится в диапазоне милливольт (мВ) и дополнительно усиливается встроенной электроникой, установленной внутри корпуса датчика.

На рис. 2 показана типичная конструкция датчика Холла . Конечный сигнал выходного напряжения обычно имеет цифровую форму импульсов (квадратная форма). Выходной сигнал датчика может быть как положительным, так и отрицательным с пиковым напряжением, обычно до 5 В или 12 В, в зависимости от типа встроенной электроники и требований используемой системы.Амплитуда выходного сигнала остается постоянной, только частота увеличивается пропорционально оборотам. В отличие от индуктивных датчиков, которые сами по себе генерируют сигнал напряжения, датчики на эффекте Холла должны дополнительно получать внешнее напряжение, необходимое для встроенной электроники. Обычное напряжение питания (+ Vcc) составляет в основном 5 В, но в некоторых случаях может составлять 12 В.

Рисунок 2. Датчик на эффекте Холла:
1. Корпус датчика, 2. Выходные провода (+ Vcc, −Vcc и сигнал)
3. Встроенная электроника, 4.Постоянный магнит
5. Устройство на эффекте Холла, 6. Спусковое колесо, G. Воздушный зазор

Индуктивный датчик, процедуры диагностики и тестирования

• Отключите датчик и убедитесь, что электрическое сопротивление индуктивной катушки составляет примерно от 500 Ом до 1 500 Ом. Если значение показания резко отличается, включая ноль или бесконечность, замените датчик.
ПРИМЕЧАНИЕ: В некоторых крайних случаях самое низкое сопротивление может составлять около 200 Ом, а в некоторых случаях максимальное сопротивление может достигать 2.500 Ом.
• Проверьте размер воздушного зазора (G) между датчиком и спусковым колесом, значение должно быть: G ≈ 0,8–1,5 мм (0,03–0,06 дюйма).
• Проверьте чистоту штифта датчика (иногда может иметься металлическая стружка).
• Проверьте целостность и состояние проводов, разъемов, клемм и состояние экрана.
• Отсоедините датчик и проверьте наличие выходного переменного напряжения при проворачивании двигателя (для датчиков оборотов двигателя) или при вращении колеса (для датчиков колес с АБС).Сигнал выходного напряжения может находиться в диапазоне от 1 В до 2 В (~ напряжение переменного тока), например, во время запуска двигателя, но в случаях более высоких оборотов можно ожидать большего. Также эту операцию можно выполнить и при подключенном разъеме датчика.

Процедуры диагностики и тестирования датчика Холла

• Проверьте подачу питания на датчик. Обычное напряжение питания составляет 5 В (в некоторых случаях может быть 12 В).
• Проверьте размер воздушного зазора (G) между датчиком и спусковым колесом, значение должно быть: G ≈ 0.8 - 1,5 мм (0,03 - 0,06 дюйма).
• Проверьте целостность и состояние проводов, разъемов и клемм.
• Проверьте чистоту штифта датчика (иногда может иметься металлическая стружка).
• Убедитесь, что есть выходной сигнал при проворачивании двигателя (для датчиков оборотов двигателя) или при вращении колеса (для датчиков колеса ABS).
ПРИМЕЧАНИЕ. В отличие от индуктивных датчиков, в датчиках Холла разъем должен быть вставлен, поскольку необходим источник питания для встроенных электронных компонентов, которые находятся внутри датчика.

Для тестирования могут использоваться: тестовая светодиодная лампа, электрический мультиметр или осциллограф. При использовании контрольной светодиодной лампы во время запуска двигателя светодиод должен быстро мигать в соответствии с оборотами двигателя, но в случаях, когда частота вращения выше, за миганием трудно следить. Тогда лучше использовать мультиметр или осциллограф для проверки частоты и напряжения сигнала.

Важный совет: При проверке сигнала датчика никогда не используйте испытательную лампу с вольфрамовой нитью, это может вызвать перегрузку по току и повредить датчик.Рекомендуется всегда использовать некоторые из более чувствительных инструментов, например, контрольную лампу со светодиодной подсветкой или электрический мультиметр.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Если вам понравилось это читать, дайте мне знать, нажмите кнопку «Нравится» или оставьте свой комментарий ниже.

Вам также могут быть интересны мои недавние сообщения:
• Разъяснение разъема OBD-II и кодов неисправностей
• Объяснение системы автомобильной шины CAN
• Система зажигания с индуктивным датчиком
• Система зажигания с датчиком на эффекте Холла
• Давление масла в двигателе Описание переключателя
• Принципы работы и диагностика топливной форсунки
• Основы работы с автомобильными реле и тестирование
• Основы и тестирование моторной тормозной жидкости
• 6 советов по подготовке автомобиля к летнему вождению
• Что означают сигнальные лампы на приборной панели?
• Маркировка шин легковых автомобилей и их значение

Разработано и опубликовано Кириллом Мучевски.
Инженер-автомобилестроитель с более чем 15-летним опытом работы в следующих областях:
• Диагностика, техническое обслуживание и ремонт автомобилей
• Помощь на дороге, обучение диагностике и устранению неисправностей автомобилей
• Сборка гоночных двигателей, модификация двигателей, разработка и Тестирование
• Исследования в области двигателей внутреннего сгорания, пропульсивного топлива, моторных масел и добавок
• Продажа шин и легкосплавных дисков, решение проблем с гарантией
• Написание и публикация технических книг, руководств и статей по автомобилестроению

Если вы хотите прочитать мои будущие сообщения, нажмите « Follow » или, что еще лучше, отправьте мне приглашение LinkedIn.Я рад расширить свою сеть LinkedIn новыми контактами.

.

Бесконтактные переключатели на эффекте Холла, датчики приближения на эффекте Холла, бесконтактный переключатель на эффекте Холла


Переключатели / датчики / элементы Холла
Датчики тока и напряжения Холла
Датчики / переключатели лопатки Холла / зубчатого колеса
Другие датчики / измерительные приборы

Информация для заказов на поставку:
Бесконтактные переключатели / датчики на эффекте Холла
Бесконтактный переключатель на эффекте Холла - это бесконтактный электронный переключатель, который состоит из постоянного магнит или ферромагнитная деталь в качестве триггерного посредника и ИС датчика Холла.ИС датчика Холла обнаруживает изменение поля магнита, когда постоянный магнит приближается к нему и генерирует электрический сигнал. Этот сигнал усиливается и выпрямляется для управления выходным сигналом переключателя.

По сравнению с магнитоэлектрическими, оптоэлектронными и емкостными датчиками приближения, датчиками Холла имеют преимущества хорошей формы выходной волны, высокой стабильности, низких затрат, невосприимчивости к маслу, грязи и вибрации, и широкая рабочая температура и т. д.Они очень подходят для интеграции в системы ПК и различные виды оборудование промышленного управления и оптимальные переключатели для управления положением, измерения скорости, подсчета, определение направления и автоматическая защита и т. д.

Температура окружающей среды: -25C / -40C ~ + 125C Влажность окружающей среды: 35% ~ 95%
Макс. ток питания: 25 мА Обратное напряжение питания: -35V
Диапазон частот: 0 ~ 50 кГц Повторяемость положения: 0.02 мм
Индикация перегрузки по току: Красный светодиод Обнаруживаемый объект: Магнит S-полюс
Макс. выходной ток: 20 мА - 200 мА Источник питания: 5 - 30 В
Макс. расстояние срабатывания: 8 мм Макс. падение напряжения: 0,4–1,0 В
Напряжение изоляции: 1500 В переменного тока, 50/60 Гц, 1 мин. Материал корпуса: Латунь, хромированная
Полярность / Защита от перенапряжения: Есть Защита от короткого замыкания на выходе: Да
Примеры бесконтактных переключателей Холла
Тип корпуса Каталожный номер Тип выхода Блок питания Выходной ток Размеры Длина кабеля
CYKN8-02CL0 OC, NPN, открытый, одиночный +4.5 В ~ + 24 В постоянного тока 20 мА M8 x 20 мм 0,65 м
CYKP8-02CL0 OC, PNP, открытый, одиночный + 4,5 В ~ + 24 В постоянного тока 20 мА M8 x 15-20 мм 0,65 м
CYKN8-20DL2 OC, NPN, открытый, одиночный + 8 В ~ + 30 В постоянного тока 200 мА M12 x 40 мм 0.5 м, макс. 2 м
CYBN8-20DL2 OC, NPN, закрытый, одинарный + 8 В ~ + 30 В постоянного тока 200 мА M12 x 40 мм 0,5 м, макс. 2 м
CYKP8-20DL2 OC, PNP, открытый, одиночный + 8 В ~ + 30 В постоянного тока 200 мА M12 x 40 мм 0,5 м, макс. 2 м
CYBP8-20DL2 OC, PNP, закрытый, одинарный + 8 В ~ + 30 В постоянного тока 200 мА M12 x 40 мм 0.5 м, макс. 2м
.

Основной принцип работы индуктивного датчика приближения

Вы когда-нибудь задумывались, как индуктивный датчик приближения может определять присутствие металлической цели? Хотя лежащая в основе электротехника сложна, основной принцип работы понять нетрудно.

В основе индуктивного датчика приближения («прокс», «датчик» или «прокс-датчик» для краткости) лежит электронный генератор, состоящий из индукционной катушки, состоящей из множества витков очень тонкой медной проволоки, конденсатора для хранения электрического заряда, и источник энергии для электрического возбуждения.Размер индукционной катушки и конденсатора согласован для создания самоподдерживающихся синусоидальных колебаний с фиксированной частотой. Катушка и конденсатор действуют как две электрические пружины с грузом, подвешенным между ними, постоянно толкая электроны вперед и назад друг к другу. Электрическая энергия подается в цепь, чтобы инициировать и поддерживать колебания. Без поддержания энергии колебания исчезли бы из-за небольших потерь мощности из-за электрического сопротивления тонкой медной проволоки в катушке и других паразитных потерь.

Колебание создает электромагнитное поле перед датчиком, потому что катушка расположена прямо за «лицевой стороной» датчика. Техническое название лицевой панели датчика - «активная поверхность».

Когда кусок проводящего металла входит в зону, определяемую границами электромагнитного поля, часть энергии колебаний передается металлу цели. Эта переданная энергия проявляется в виде крошечных циркулирующих электрических токов, называемых вихревыми токами.Вот почему индуктивные датчики иногда называют вихретоковыми датчиками.

Протекающие вихревые токи сталкиваются с электрическим сопротивлением, пытаясь циркулировать. Это создает небольшую потерю мощности в виде тепла (как маленький электрический обогреватель). Потери мощности не полностью компенсируются внутренним источником энергии датчика, поэтому амплитуда (уровень или интенсивность) колебаний датчика уменьшается. В конце концов, колебания уменьшаются до такой степени, что другая внутренняя цепь, называемая триггером Шмитта, обнаруживает, что уровень упал ниже заранее определенного порога. Этот порог - уровень, при котором присутствие металлической цели однозначно подтверждается. При обнаружении цели триггером Шмитта включается выход датчика.

На короткой анимации справа показано влияние металлической цели на колеблющееся магнитное поле датчика. Когда вы видите, что кабель, выходящий из датчика, становится красным, это означает, что обнаружен металл и датчик был включен. Когда цель уходит, вы можете видеть, что колебания возвращаются к своему максимальному уровню, и выход датчика снова отключается.

Хотите узнать больше об основных принципах работы индуктивных датчиков приближения? Вот короткое видео на YouTube, посвященное основам:

Как это:

Нравится Загрузка ...

Генри Менке

У меня есть образование в области электротехники, которое дает мне прочную техническую основу для моей нынешней должности директора по маркетингу продукции.

.

Шесть методов измерения тока - Hioki USA

HIOKI - один из немногих производителей в мире, который разрабатывает и производит собственные датчики тока для сопряжения с анализаторами мощности, измерителями мощности и осциллографами. Еще более примечательно то, что наша текущая линейка датчиков состоит из продуктов, которые работают на 6 различных принципах измерения тока, каждый из которых имеет свои преимущества и области применения. Шесть методов измерения тока:

1. Датчик тока (CT)
2. Элемент Холла
3.Катушка Роговского
4. ТТ с использованием метода нулевого потока
5. Элемент Холла с использованием метода нулевого потока
6. Магнитный затвор с использованием метода нулевого потока

Принципы измерения датчика тока

Измерение Принципы: Датчики тока CT

Датчики тока CT используют принцип преобразования измеряемого тока во вторичный ток, который пропорционален коэффициенту числа витков.

Принцип измерения:

Характеристики по сравнению с другими методами измерения тока:

Соответствующие датчики тока Hioki (номера моделей):

9675, 9657-10, 9661-01, 9695-03, 9695-02, 9694, 9669, 9661, 9660, 9132-50, 9018-50, 9010-50, 9650, 9651 и др.

* Более подробные характеристики см. На страницах отдельных продуктов.

Принципы измерения: датчики тока с элементами Холла

При измерении тока с помощью элемента Холла используется принцип преобразования магнитного поля, создаваемого вокруг измеряемого тока, в напряжение с использованием эффекта Холла.

Принцип измерения:

Характеристики по сравнению с другими методами измерения тока

Соответствующие датчики тока Hioki (номера моделей):

CT7636, CT7631, CT7642, CT7731, CT7736, CT7742 и т. Д.

* Указанные выше продукты отличаются улучшенным смещением и точностью.

* Более подробные характеристики см. На страницах отдельных продуктов.

Принцип измерения: датчики тока пояса Роговского

Датчики тока пояса Роговского выполняют измерения путем преобразования напряжения, которое индуцируется в катушке с воздушным сердечником магнитным полем переменного тока, создаваемым вокруг измеряемого тока.

Принцип измерения:

Характеристики по сравнению с другими методами измерения тока:

Соответствующие датчики тока Hioki (номера моделей):

CT7046, CT7045, CT7044, CT9667-01, CT9667-02, CT9667-03 и т. Д.

* Вышеуказанные продукты обладают повышенной шумостойкостью.

* Более подробные характеристики см. На страницах отдельных продуктов.

Принципы измерения: Измерение тока с нулевым потоком переменного тока (тип обнаружения обмотки), определение тока

Определение тока с нулевым потоком переменного тока (тип обнаружения обмотки) улучшает низкочастотные характеристики метода ТТ.

Принцип измерения:

Характеристики по сравнению с другими методами измерения тока:

Соответствующие датчики тока (модели):

9272-10 и т. Д.

* Более подробные характеристики см. На страницах отдельных продуктов.

Принципы измерения: Датчики переменного / постоянного тока с нулевым потоком (тип обнаружения элемента Холла) датчики тока

Датчики тока переменного / постоянного тока с нулевым потоком (тип обнаружения элемента Холла) могут измерять постоянный ток, потому что они сочетают метод КТ с элементом Холла.

Принцип измерения:

Характеристики по сравнению с другими методами измерения тока:

Соответствующие датчики тока Hioki (номера моделей):

3273-50, 3274, 3275, 3276, CT6700, CT6701 и т. Д.

* Более подробные характеристики см. На страницах отдельных продуктов.

Принципы измерения: Датчики тока с нулевым потоком переменного / постоянного тока (тип обнаружения магнитного затвора)

Датчики тока переменного / постоянного тока с нулевым потоком (тип обнаружения магнитного затвора) могут измерять постоянный ток, так как они объединяют трансформатор тока метод с магнитным затвором (FG) элементом.

Принцип измерения:

Характеристики по сравнению с другими методами измерения тока:

Соответствующие датчики тока Hioki (номер модели):

CT6841, CT6843, CT6844, CT6845, CT6846, CT6862, CT6863, CT6865, 9709 и т. Д.

* Более подробные характеристики см. На страницах отдельных продуктов.

.

Смотрите также