Как проверить возбуждение на генераторе


Как проверить генератор автомобиля своими руками — комплексная диагностика

Главным источником электропитания в автомобиле является генератор, он представляет собой такую себе "мини-электростанцию". Неправильная или нестабильная работа этого узла чревата плохой зарядкой аккумулятора (АКБ). Вышедший из строя генератор не обеспечивает зарядки, следовательно, бортовая сеть машины будет работать на АКБ которого на долго не хватит. В итоге — аккумулятор полностью разряжается, двигатель "глохнет" где-нибудь за городом, а у вас появляется новая "головная боль" и необходимость замены генератора.

Для того чтобы не допустить такого сценария необходимо регулярно следить за состоянием этого устройства, а также зарядкой, которую он дает. Если же вы заметили какие-либо перебои в работе необходимо проверить генератор, а как это сделать вы сейчас узнаете.

Но перед этим считаю необходимым поговорить о мерах предосторожности и определенных правилах, которые нужно соблюдать при проверке этого электроприбора для того, чтобы не повредить его.

!!! Нельзя:

  • Проверять работоспособность генератора путем короткого замыкания, то есть «на искру».
  • Соединять клемму «30» (в некоторых случаях «В+») с «массой» или клеммой 67 (в некоторых случаях «D+»).
  • Допускать работу генератора без включенных потребителей, особенно нежелательна работа при отключенном аккумуляторе.
  • Выполнять сварочные работы кузова автомобиля с подключенными проводами генератора и аккумулятора.

  • !!! Важно:
  • Проверка производится при помощи вольтметра или амперметра.
  • Проверка вентилей производится напряжением не выше 12 В.
  • В случае замены проводки электрогенератора необходимо подбирать провода аналогичного сечения и длины.
  • Перед тем как проверить устройство убедитесь в работоспособности всех соединений и правильном натяжении приводного ремня. Правильно натянутым считается ремень, который при нажатии на середину с усилием 10 кг/с, прогибается не более чем на 10-15 мм.

Как проверить генератор мультиметром или вольтметром?

Проверка регулятора напряжения

  1. Для того, чтобы проверить регулятор напряжения потребуется вольтметр со шкалой от 0 до 15 В. До начала проверки следует прогреть двигатель минут 15 на средних оборотах с включенными фарами.
  2. Произведите замер напряжения между выводами «массы» генератора и «30» («В+»). На вольтметре должно показываться нормальное для конкретного автомобиля напряжение. К примеру, для ВАЗ 2108 оно будет соответствовать — 13,5–14,6 В. Если напряжение будет ниже или выше — вероятнее всего регулятор требует замены.
  3. Кроме того, можно проверить регулируемое напряжение, для этого подключите вольтметр к клеммам АКБ. Следует отметить, что результат такого измерения будет неточным, если вы уверенны, что проводка 100% исправна. Мотор при этом должен работать на средних оборотах близких с включенными фарами и прочими потребителями электроэнергии. Размер напряжения должен совпадать с определенной величиной для конкретной модели авто.

Проверка диодного моста генератора

  1. Включите вольтметр в режим измерения переменного тока и подключите его к "массе" и зажиму «30» («В+»). Напряжение должно быть не более 0,5 В, в противном случае есть вероятность неисправности диодов.
  2. Чтобы проверить пробой на «массу», необходимо отключить аккумулятор, а также снять провод генератора, который идет к клемме «30» («В+»).
  3. После подключите прибор между клеммой «30» («В+») и отключенным проводом генератора. Если на приборе ток разряда превышает — 0,5 мА, можно предположить, что есть пробой диодов или изоляции обмоток диодов генератора.
  4. Сила тока отдачи проверяется с использованием специального зонда, который является дополнением мультиметра. Он представляет собой что то на подобие зажима или клещей, которыми охватываются провода, измеряя таким образом силу тока, который проходит по проводу.

Проверка тока отдачи

  1. Чтобы измерить ток отдачи нужно охватить зондом провод, который идет к зажиму «30» («В+»).
  2. Затем, заведите двигатель и произведите измерение, во время замера мотор должен работать на высоких оборотах. Включайте электроприборы по очереди и делайте замер для каждого потребителя отдельно.
  3. Затем подсчитайте показания.
  4. Следующий тест необходимо проводить со всеми одновременно включенными потребителями энергии. Величина замера не должна быть ниже суммы показаний каждого из потребителя, когда вы измеряли каждый из них по очереди, допускается расхождение 5 А в меньшую сторону.

Проверка тока возбуждения генератора

  1. Чтобы проверить ток возбуждения генератора, заведите мотор и дайте ему высокие обороты.
  2. Расположите измерительный зонд вокруг провода, подключенного к клемме 67 («D+»), показания на приборе будут соответствовать величине тока возбуждения, на исправном электрогенераторе он будет равен — 3-7 А.

Чтобы проверить обмотки возбуждения нужно будет снять щеткодержатель и регулятор напряжения. Возможно потребуется зачистите контактные кольца, также проверьте нет ли обрывов в обмотке или замыканий на «массу».

  1. Для этого теста используется омметр, его щупы необходимо приложить к контактным кольцам, величина сопротивления при этом должна быть в пределах 5-10 Ом.
  2. После подключите один щуп омметра к любому контактному кольцу, второй щуп к статору. На исправном генераторе мультиметр будет показывать бесконечно большое сопротивление, в противном случае — обмотка возбуждения замыкает на «массу».

Видео как проверить генератор автомобиля своими руками:

Актуально:

Автопособие водителя

Как проверить возбуждение на генераторе — Auto-Self.ru

Как происходит возбуждение генератора

Генератор – это не просто какой-нибудь узел. По сути, он является электрической машиной, преобразующей мехэнергию в ток. Генератор обеспечивает автомашину подзарядкой, без которой та сможет продержаться в движении не больше 1-2 часов за счет аккумулятора. Узнайте, как происходит возбуждение генератора в автомобиле.

Как происходит возбуждение в гене

Электроэнергия или электрическая сила в генераторе возникает тогда, когда сквозь магнитный поток внутри перемещается проводник. Ток возникает также и в том случае, когда перемещается магнит, а проводник остается неподвижным.

Без теоретических объяснений и выводов, можно представить себе возбуждение гена так:

  • На обмотку гена подается электричество с АКБ. Электрический ток первыми принимают щетки и медные кольца.
  • Реле отсечки – специальная штука, которая не дает аккумулятору разрядиться при остановке генератора. Когда водитель включает зажигание, то напряжение поступает на реле отсечки, оно притягивает внутренние элементы генератора, тем самым, замыкаются контакты. Получается, что реле в этом случае – эффективный переходник, соединяющий обмотку гена с аккумулятором.
  • На приборной панели в салоне автомобиля предусмотрена лампочка. Она дает понять водителю, когда начинается зарядка геном АКБ. Когда включается зажигание, она горит до тех пор, пока напряжение идет с аккумулятора и гаснет, когда процесс энергополучения идет обратно.

Что такое СВ и АРВ

Система возбуждения гена – это комплекс различных устройств, включающих: возбудитель, АРВ, СГП, УБФВ, устройство развозбуждения, а также дополнительные тесто-измерители.

Система возбуждения

АРВ – это не что иное, как регулятор, функционирующий полностью на автомате. СГП – средство, которое гасит магнитное поле. УБФВ – устройство, благодаря которому осуществляется быстрая форсировка возбуждения.

Сам возбудитель является источником питания (ИП) обмотки постоянным напряжением. В данном случае ИП может быть сам ген совместно с полупроводниками и выпрямительным блоком (диодным мостом).

АРВ применяются в синхронном гене. Здесь они выполняют функцию повышения физической стабильности генерирующего устройства. Принято классифицировать АРВ на устройства с пропорциональным шагом и сильным шагом. Одни способны изменять токоэнергию по несоответствию статорного напряжения, а вторые – реагируют в более широком смысле этого слова.

Когда ток снижается, к примеру, при замыкании, предусмотрена форсировка. Она подразумевает скорое увеличение возбуждения, что влияет на остановку спадов напряжения и сохраняет устойчивость.

Корректировка и ускорение значительно повышают надежность функционирования реле.

Когда происходит отключение генератора, что тоже может вызываться внутренними замыканиями, агрегат следует развозбудить. Для этого достаточно погасить магнитполе, что даст возможность уменьшить размеры повреждения статорной обмотки.

Погасить магнитполе – это, значит, быстрое уменьшить магнитпоток возбуждения гена до величины, близкой к 0. Одновременно с этим уменьшается ЭДС агрегата.

Как погасить магнитное поле

Гашение магнитполя осуществляется с помощью АГП – особых устройств-автоматов, действующих от реле. Именно они помогают активировать сопротивление.

В генерирующих устройствах, функционирующих по принципу тиристорвозбуждения, снижение магнитполя осуществляется методом переключения основных вентилей в инверторный порядок. Тем самым, сэкономленная в обмотке энергия, передастся возбудителю или диодному мосту.

Характеризуется СВ номинальным напряжением (НТ), но оно может быть разным.

  • 100 или 600 В, если речь идет о возбуждении на выводах обмотки.
  • 100 или 8000 А, если речь идет о НТ, находящимся непосредственно в обмотке, и соответствует нормальной, стандартной работе генератора.

Следует знать, что НТ возбудителя должен составлять доли процентов от НТ генератора. Как правило, считают значения в 0,2-0,6 процентов от номинальной мощности гена.

Что касается быстродействия возбудителя, то оно зависит от скорости нарастания силы тока на обмотке индуктора (ротора).

СВ (система возбуждения) обязана рассчитываться в зависимости от работы АРВ. Другими словами, без АРВ работа допускается, но только на время, нужное для ремонта или замены. В остальных случаях использование АРВ обязательно.

Примечание. Если СВ, все же, функционирует без АРВ, то нужно обеспечить дополнительную систему защиты. Это РДУ и другие средства, способные обеспечить развозбуждение и автогашение генераторного поля.

СВ обязана обеспечивать ток в продолжительном режиме, превышая НТ генератора не менее чем на 10 процентов.

Бесконтактная система возбуждения

СВ также бывает полупроводниковой. В этом случае она должна иметь РВС (режим внутреннего сохранения).

Важно, чтобы защитные устройства, обеспечивающие стабильность во время перенапряжений, были многократного действия.

Состав системы возбуждения Что обеспечивает система возбуждения
трансформатор выпрямительный начальное возбуждение
трансформатор последовательный вольтодобавочный холостой ход
тиристорный преобразователь (ТВ 8-2000/) 050- 1У4) включение в сеть методом точной синхронизации в нормальных режимах и самосинхронизации в аварийных режимах
система охлаждения преобразователя работу ГГ в энергосистеме с нагрузками от холостого хода до номинальной и перегрузками
агрегат начального возбуждения (АН В-2) недовозбуждение в пределах устойчивой работы генератора
автоматический регулятор возбуждения (АУ1Г типа АРВ-СД) форсировку возбуждения по току и напряжению
панель гашения поля эффективное гашение поля
релейные панели развозбуждение при нормальных остановках агрегата

Разновидности СВ

СВ принято делить на 2 группы. Они классифицируются в зависимости от способа возбуждения. Различают СВ независимого типа (СВНТ) и зависимого (СВЗТ).

К СВНТ относят все возбудители, которые сопряжены с генераторным валом. По сути, они способны вырабатывать напряжение в независимом режиме.

За группу СВЗТ принимают возбудители, схватывающие вольтаж прямиком с концов основного генератора. Ток поступает через трансформаторы особого типа.

Тиристорная система возбуждения

Более выгодно смотрятся СВНТ, так как в них выработка тока не зависит от электроцепи.

Интересный момент. На генах со слабой мощностью в качестве возбудителя применяются отдельные, независимые генераторы, способные вырабатывать ток. Они соединяется с валом основного гена (синхронного).

Другие преимущества СВНТ:

  • Высокий процент быстродействия;
  • Высокая скорость нарастания тока;
  • Возможность замены тиристоров, вышедших из строя, без остановки генератора.

Однако СВНТ имеют и недостатки, связанные с самим устройством возбудителя. К примеру, если быстрота повышения возбуждения не слишком высока.

Кроме того:

  • Слабыми в СВНТ выглядят контакты скользящего типа, так как напряжение к ним подводится через щетки.

Сегодня наиболее востребованы СВ с полупроводниковыми диодными мостами. Они построены по 3-фазной схеме, в них задействуется минимальное количество выстроенных по порядку тиристоров.

Что касается схем диодного моста, то они бывают 1-групповыми и 2-групповыми. Один выпрямитель внедрен в первом случае, два – во втором.

Токоподавателем в СВНТ является синхронный ген, нашедший место между индуктором и верхним кронштейном основного генератора.

Устройство синхронного генератора

СВЗТ менее надежна, чем первая система, так как работа возбудителя здесь полностью зависимая. Другими словами, возбудитель в этом случае будет работать только в том случае, если получит ток от сети. А в сети, как правило, часто возникают замыкания, нарушающие стабильное функционирование СВ. Получается лишняя нагрузка на СВЗТ, которая должна обеспечивать форсировку напряжения в обмотке.

Но СВЗТ в некоторых случаях имеют плюсы перед самостийными системами. Они выражаются простотой схемы. Недостатком же выступает, как и говорилось, непостоянство работы, что более всего заметно в высокомощных машинах.

По мнению экспертов, если подразумевается длительность ремонта, то лучше зарекомендуют себя СВЗТ.

Проверка возбуждения

Основными симптомами, которые доказывают неработоспособность СВ на генераторе, являются показатели внешних характеристик. Говоря иначе, если напряжение через выводы генератора не поступает, то агрегат должен самовозбуждаться по принципу. Если такого не происходит, налицо проблема.

Хорошо заметна работа генератора на дизельных агрегатах. Они получают меньшую, чем обычно дозу топлива, как только генератор развивает небольшую мощность. Таким образом, дизельная установка остается недогруженной.

Проверка системы возбуждения

Ясно, что при уменьшении подачи топлива в цилиндры, снизится и скорость движения. По ней (скорости) можно будет определить снижение напряжения генератора, следовательно, и его возбуждение.

Если в генераторе увеличивается произведение напряжения, то не должно увеличиваться магнитное насыщение СВ, иначе прочность изоляции электромашины не выдержит. Ограниченным в некоторых значениях можно назвать также генераторный ток, который в случае увеличения приведет к перегоранию обмотки якоря.

Поделитесь с друзьями в соц.сетях:

Facebook

Twitter

Google+

Telegram

Vkontakte

Как Проверить Генератор (Авто) | Три Способа Проверки

Автомобильный генератор является главным источником энергии в бортовой сети и при его неполадках или выходе из строя на одном аккумуляторе долго не проедешь. Именно поэтому так важно контролировать работоспособность генератора.

В полный комплекс проверок генератора входит:

В большинстве случаев проверить генератор автомобиля своими руками не составит труда, поскольку на каком бы авто вы не проверяли, принцип один и тот же. Но все же, многие автовладельцы часто задаются вопросом: как проверить генератор мультиметром или подручными средствами?

Далее разберем поподробнее как проверить генератор в гаражных условиях без специальных стендов, которые используются на СТО.

Как проверить генератор не снимая с машины

Есть два способа, используя мультиметр и вообще без него. Первый, относительно новый, заключается в том, чтобы проверить напряжение на клеммах аккумулятора, а второй, старый и проверенный, почти в противоположном — клемму АКБ нужно снять на работающем двигателе.

  1. Проверка аккумулятора мультиметром сначала происходит в состоянии покоя — напряжение должно быть в пределах 12.5-12.8 В. Затем надо замерить показания уже на запущенном двигателе, если наблюдается 13.5-14.5 В при 2 тыс. оборотах, значит все в порядке. При чем на новых автомобилях даже 14.8 В вполне нормально, как уверяют производители — сказывается обилие электроники. В заключение остается проверить напряжение под нагрузкой, то есть, подключив потребители — печку, фары, подогрев, магнитолу. Провал в пределах 13,7–14,0 В считается допустимым, а вот 12,8–13 В уже говорят о неисправности.
  2. Второй способ, как и многие «дедовские», простой и безотказный, но при этом довольно опасный и требующий аккуратности. По утверждениям, работает как на ВАЗах, так и на относительно новых авто, вроде Авео. В чем суть — ослабить болт крепления минусовой клеммы АКБ ключом на 10, запустить двигатель и дать небольшую нагрузку, включив один из потребителей например фары. Затем снять клемму при работающем моторе — если он не заглох и свет фар не померк, значит с генератором все точно в порядке, в противном случае можно быть уверенным, что он сломан. Пробовать такой метод следует на свой страх и риск.

Крайне нежелательно допускать работу генератора при отключенных потребителях, особенно аккумуляторе. Это может привести к неисправности реле-регулятора.

Выяснив, что неисправность есть, следует демонтировать и проверять снятый генератор мультиметром, лампочкой и визуально. Проверке подлежит каждый из его элементов по-отдельности.

Первым делом стоит убедиться, что ремень генератора хорошо натянут, а подшипники не разбиты. Посторонние шумы и сильно горячий генератор говорят об износе подшипников.

Как проверить щетки и контактные кольца

Для начала кольца и щётки визуально осматриваются, и оценивается их состояние. К примеру, измеряется минимальный остаток (мин. высота токосъемных щеток не мене 4,5 мм, а мин диаметр колец 12,8 мм). Кроме этого, смотрят на наличие выработок и борозд.

Щетки генератора и щеточный узел

Щетки, извлеченные из щеточного узла регулятора

Контактные кольца генератора

Контактные кольца ротора генератора

Как проверить диодный мост (выпрямитель)

Проверка диодов производится методом замера сопротивления и выявления проводимости. Поскольку диодный мост состоит из двух пластин, то проверяем сразу одну, а затем другую. Тестер должен показывать проводимость диодов лишь в одном направлении. Теперь немного подробнее: один щуп тестера держим на клемме «+», а другим поочередно проверяем выводы диодов, а потом меняем местами щупы (в одном случае должно быть большое сопротивление, а другом нет). Затем точно таким же образом поступаем и с другой частью моста.

Следует заметить, что сопротивление не должно быть нулевым, так как это говорит, что диод пробитый. Пробитый диод моста и тогда, когда нет сопротивления в обеих сторонах.

Проверка диодного моста мультиметром

Проверка диодного моста

Проверка контактных колец генератора

Проверка контактных колец

Хотя бы один негодный диод приводит к выходу из строя всего диодного моста и дает недозаряд АКБ.

Как проверить регулятор напряжения

Регулятор проверяется в случае недозаряда или перезаряда аккумулятора. Замер напряжения производится на оборотах оно должно находится в пределах 14,4 – 15В.

Кроме этого можно проверить сопротивление конденсатора регулятора (в момент подсоединения щупов тестера оно должно уменьшаться до стремления к бесконечности).

На снятом регуляторе напряжения генератора осматривают состояние щеток и производят проверку исправности при помощи лампочки 12В и постоянного напряжения. То есть к щёткам нужно подключить лампочку, а на плюсовую клемму и массу регулятора подать 12В (лампочка должна гореть, а при увеличении напряжения свыше 15В погаснуть).

Как проверить статор

Сопротивление обмотки статора проверяется без диодного моста и меж выводами должно быть около 0,2 Ом, а между нулевым проводом и обмоткой до 0,3. Сильное гудение генератора во время работы говорит о замыкании обмотки статора или моста. Кроме такой проверки нужно осмотреть наличие выработок в статоре и на роторе.

Как проверить ротор генератора

Первым шагом будет прозвонка обмотки возбуждения. Для этого на мультиметре устанавливаем режим на проверку сопротивления и измеряем его между контактными кольцами – сопротивление обмотки должно находится в пределах 2,3-5,1 Ом. Когда оно свыше – то или обрыв или же просто плохой контакт между кольцами и выводами обмотки. Малое сопротивление говорит о межвитковом замыкании.

При помощи режима амперметра на мультиметре также можно проверить потребляемый обмоткой ток. Нужно подать 12В на контактные кольца и в разрыве цепи замерить – обмотка возбуждения не должна потреблять более 3-4,5 Ам.

Ротор генератора

Ротор генератора авто

Статор генератора

Статор (обмотка) генератора авто

К полному комплексу можно еще добавить и проверку сопротивления изоляции ротора. Чтобы это сделать, понадобится 40-ка ватная лампочка и провода (один провод от розетки на кольцо, а другой через лампочку на корпус – если все в норме, то лампочка не загорится, если же нить едва накаливается — значит происходит утечка тока на массу).

Придерживаясь всех рекомендаций и последовательности проверки, в большинстве случаев, вам без проблем удастся проверить генератор автомобиля и его работоспособность своими силами, имея в своем распоряжении только один мультиметр. А вот чтобы его отремонтировать, определив неисправный узел, надо заменить вышедшую из строя деталь. Контролируйте натяжение ремня, состояние контактов, следите за лампочкой генератора на приборной панели и генератор прослужит вам дольше.


Автор: Иван Матиешин

Спрашивайте в комментариях. Ответим обязательно!

Как проверить провод возбуждения генератора

Правило 1 если у вас загорелась или начала слабо гореть лампочка на приборной панели с изображением аккумулятора (конечно только на заведенном двигателе), примите меры незамедлительно. Если этого не сделать можно заглохнуть в самом неожиданном месте. Кроме того, эксплуатация генератора при наличии в нем неисправностей способна ухудшить положение.

Правило 2 если вы не чувствуете себя компетентным в данной области, у вас нет необходимых инструментов и запчастей не пытайтесь чинить генератор самостоятельно. Правило 3 не стоит проверять наличие зарядки отключением аккумулятора при работающем двигателе. Это вредное занятие, причем такой способ может вывести из строя и генератор и блок управления впрыском и другие электронные компоненты. Правило 4 Не стоит доверять чужим советам в деле ремонта. Советы типа — поменяй то или это у меня так было, могут сильно навредить.

Прежде чем менять все подряд лучше грамотно проверить все детали и заменить лишь необходимые. Правило 5 если делать — то хорошо, с использованием достойных запчастей и заменой всех несоответствующих деталей. Правило 6 перед тем как разбираться с недозарядом АКБ или низким бортовым напряжением, внимательно проверьте массу генератора. Вариант 1 лампа зарядки (она же возбуждения, она же индикатор зарядки) не загорается ни при включении зажигания ни при заведенном двигателе.

Возможные причины — сгорела лампа, провод возбуждения не соединен с генератором (оборван, нет контакта в разъеме, просто отсоединился), нет питания у приборной панели, щетки вышли из строя полностью, вышел из строя якорь, вышел из строя регулятор напряжения (другие причины). Проверка при включенном зажигании, проверить наличие напряжения питания (= напряжению АКБ или немного ниже) на проводе возбуждения отключенном от генератора (как правило тонкий провод, синий с белой полосой сечение 0. 75 — 1. 0) относительно массы. Если есть, можно дополнительно убедиться в работоспособности всей цепи подключив провод возбуждения к массе (лампа зажжется) конечно только отключив этот провод от генератора, если при такой проверке использовать корпус генератора в качестве массы можно проверить наличие таковой на генераторе.

Если все эти проверки подтвердили работоспособность соответствующих элементов проверять генератор (снять, разобрать, проверить). Вариант 2 лампа зарядки загорается при включенном зажигании, после заводки не тухнет на увеличение оборотов тоже не реагирует. Единственная надежда избежать разборки генератора — порванный ремень или ремень доведенный до последней стадии истирания или ослабленный практически полностью.

Крайне маловероятно касание оголенным проводом возбуждения массы. Вариант 3 лампа загорается, после заводки тухнет, затем начинает гореть еле еле (особенно заметно ночью) ярче по мере возрастания нагрузки. Наиболее вероятно что причина кроется в генераторе в щеточном узле. Возможной причиной является и ремень.

Вариант 4 лампа загорается, тухнет при заводке (или не тухнет) затем начинает гореть то ярче то слабее причем имеется зависимость от оборотов и нагрузки, может самопроизвольно погаснуть (навсегда). Снимать и проверять генератор. Крайне маловероятно касание массы проводом возбуждения. Вариант 5 лампа ведет себя абсолютно нормально ничто не предвещает неприятностей тем не менее аккумулятор постоянно разряжен а при езде ночью можно столкнуться с ситуацией когда при многочисленных включенных потребителях машина вдруг глохнет и завести ее невозможно так как аккумулятор полностью разряжен. Это случай очень распространен но не всегда проявляется так ярко.

Суть дела в том что генератор дает зарядку но в случае подключения достаточно больших нагрузок напряжение зарядки падает и иногда очень значительно и как результат аккумулятор постоянно недозаряжен. В случае обнаружения подобных явлений необходимо перед тем как проверять генератор предпринять следующую проверку. Проверка напряжения зарядки. Часто, так называемые мастера, проверяют наличие зарядки исключительно диким на мой взгляд способом — сниманием клеммы с аккумулятора на работающем двигателе. Способ недопустимый, и совершенно неинформативный.

Те кто кое-что понимает, используют тестер или мультиметр или даже отдельный вольтметр. При этом очень часто поверяющие совершают ряд одинаковых стандартных ошибок: 1 наличие увеличения напряжения после заводки на клеммах аккумулятора считается достаточным и дальнейшие проверки не производятся. 2 определив напряжение на аккумуляторе, проверяющий не всегда осведомлен о соответствии его нормам для данного генератора. 3 наличие напряжения меньшего чем норма воспринимается как безусловный дефект генератора. 4 нагрузочные тесты не проводятся.

Как следует производить проверку. 1) завести двигатель и проверить с помощью цифрового мультиметра напряжение на клеммах АКБ (потребители отключены, холостой ход). 2) проверить соответствие спецификациям для данного генератора. В общем нормой можно считать напряжение выше 13. 8 — 13. 9 Вольт и ниже 15 Вольт для современных генераторов или 14.

5 для генераторов старше 10 лет (приблизительно). 3) если напряжение в норме, проверить при подключении максимального количества потребителей (фары, обогрев заднего стекла, вентилятор печки). Падение напряжения не более чем на 0. 5 Вольт можно считать нормальным даже если для обеспечения этого условия нужно увеличить обороты до 1300-1500. 4) проверить на увеличение напряжения при повышении оборотов (не должно превысить 15 Вольт или согласно конкретной спецификации).

5) если изначально напряжение на АКБ ниже нормы, проверить какое напряжение непосредственно на генераторе Разница в напряжениях на АКБ и на клеммах самого генератора не должна составлять более 0. 1 Вольт без нагрузок и более чем 0. 3 Вольт при наличии наиболее мощных потребителей. Если разница выходит за эти рамки необходимо вычислить точку падения напряжения. Для этого нужно замерить падение напряжения непосредственно в цепи массы генератора и в цепи плюса. Необходимо измерить напряжение между клеммой плюса на генераторе и клеммой АКБ и между корпусом генератора и клеммой минуса АКБ.

Необходимо учесть что в зависимости от разных факторов точек, где происходит падение напряжения, может быть много. После обнаружения падения напряжения в цепи например массы, точка падения вычисляется следующим образом: 5. 1 нужно включить все нагрузки и измерить падение. Предположим падение 1 Вольт затем от отправной точки, например корпуса генератора, нужно сокращать число звеньев цепи и наблюдать за изменением значения падения напряжения. Цепь массы состоит из следующих элементов: 5. 1.

1 клемма АКБ-масса кузова 5. 1. 2 масса кузова — двигатель 5. 1. 3 двигатель — генератор.

5. 2 Цепь плюса можно разбить подробней: 5. 2.

1 резьбовая клемма генератора — клемма провода 5. 2. 2 клемма провода — провод на стартер 5.

2. 3 провод — клемма стартера 5. 2. 4 клемма стартера — провод на АКБ 5.

2. 4 провод на АКБ — клемма АКБ. Это наиболее типичные цепочки и не следует удивляться таким подробностям. Из опыта встречался случай падения в 0.

15 Вольт между головкой блока и блоком. Конечно на разных моделях и разных двигателях цепочки могут быть длиннее или короче. Из опыта, наиболее проблемными местами являются масса от двигателя на генератор и точка соединения тонкого провода от генераторного плюса с толстым проводом на питание стартера в клемме стартера. Как правило заменить плюсовой провод стартера-генератора сложновато и легче бросить дополнительный провод непосредственно от АКБ на генератор. Метод определения точки падения напряжения может быть гораздо проще при заведенном двигателе и включенных мощных потребителях ощупью найти в проводке нагретое место. Повышенное напряжение, сильно зависящее от оборотов двигателя, может быть вызвано дефектом регулятора, выходом из строя диодного моста или аккумуляторной батареей с осыпанными пластинами и как следствие крайне низким зарядным током.

Ответы (1)

может быть межвитковое замыкание обмотки статора, попутно нужно проверить целостность диода и сопротивления на щитке приборов, сопротивление могло "сгореть" при броске напряжения

перебрал генератор,генератор еще грелся сразу же и очень сильно,поменял обмотку,проверил диодный мост и поставил дополнительный диод,поставил роботает очень хорошо,при всей включенной электроники напряжение не меньше 13.5.

перебрал генератор,генератор еще грелся сразу же и очень сильно,поменял обмотку,проверил диодный мост и поставил дополнительный диод,поставил роботает очень хорошо,при всей включенной электроники напряжение не меньше 13.5.

значит проблема решена?

Обнаружил что проблема решилась но появилась другая,при заведенном двигателе тлеет лампочка акб,но это только на 800 900 об, подгазовываешь до 1000 все норм,и еще при и этом всем даже когда тлеет вольташь 13 14 , но если на холостом ходу включить какой небудь потребитель,вольты начинают падать до 11 но уже проехал более 100км,и акум не садиться,
,уже замаяласься,в чем может быть проблема.

проверять все надо, те же свечи зажигания, катушки, бронипровода. Ну и контакты все

Главным источником электропитания в автомобиле является генератор, он представляет собой такую себе "мини-электростанцию". Неправильная или нестабильная работа этого узла чревата плохой зарядкой аккумулятора (АКБ). Вышедший из строя генератор не обеспечивает зарядки, следовательно, бортовая сеть машины будет работать на АКБ которого на долго не хватит. В итоге — аккумулятор полностью разряжается, двигатель "глохнет" где-нибудь за городом, а у вас появляется новая "головная боль" и необходимость замены генератора.

Для того чтобы не допустить такого сценария необходимо регулярно следить за состоянием этого устройства, а также зарядкой, которую он дает. Если же вы заметили какие-либо перебои в работе необходимо проверить генератор, а как это сделать вы сейчас узнаете.

Но перед этим считаю необходимым поговорить о мерах предосторожности и определенных правилах, которые нужно соблюдать при проверке этого электроприбора для того, чтобы не повредить его.

. Нельзя:

  • Проверять работоспособность генератора путем короткого замыкания, то есть «на искру».
  • Соединять клемму «30» (в некоторых случаях «В+») с «массой» или клеммой 67 (в некоторых случаях «D+»).
  • Допускать работу генератора без включенных потребителей, особенно нежелательна работа при отключенном аккумуляторе.
  • Выполнять сварочные работы кузова автомобиля с подключенными проводами генератора и аккумулятора.

  • . Важно:
  • Проверка производится при помощи вольтметра или амперметра.
  • Проверка вентилей производится напряжением не выше 12 В.
  • В случае замены проводки электрогенератора необходимо подбирать провода аналогичного сечения и длины.
  • Перед тем как проверить устройство убедитесь в работоспособности всех соединений и правильном натяжении приводного ремня. Правильно натянутым считается ремень, который при нажатии на середину с усилием 10 кг/с, прогибается не более чем на 10-15 мм.

Как проверить генератор мультиметром или вольтметром?

Проверка регулятора напряжения

  1. Для того, чтобы проверить регулятор напряжения потребуется вольтметр со шкалой от 0 до 15 В. До начала проверки следует прогреть двигатель минут 15 на средних оборотах с включенными фарами.
  2. Произведите замер напряжения между выводами «массы» генератора и «30» («В+»). На вольтметре должно показываться нормальное для конкретного автомобиля напряжение. К примеру, для ВАЗ 2108 оно будет соответствовать — 13,5–14,6 В. Если напряжение будет ниже или выше — вероятнее всего регулятор требует замены.
  3. Кроме того, можно проверить регулируемое напряжение, для этого подключите вольтметр к клеммам АКБ. Следует отметить, что результат такого измерения будет неточным, если вы уверенны, что проводка 100% исправна. Мотор при этом должен работать на средних оборотах близких с включенными фарами и прочими потребителями электроэнергии. Размер напряжения должен совпадать с определенной величиной для конкретной модели авто.

Проверка диодного моста генератора

  1. Включите вольтметр в режим измерения переменного тока и подключите его к "массе" и зажиму «30» («В+»). Напряжение должно быть не более 0,5 В, в противном случае есть вероятность неисправности диодов.
  2. Чтобы проверить пробой на «массу», необходимо отключить аккумулятор, а также снять провод генератора, который идет к клемме «30» («В+»).
  3. После подключите прибор между клеммой «30» («В+») и отключенным проводом генератора. Если на приборе ток разряда превышает — 0,5 мА, можно предположить, что есть пробой диодов или изоляции обмоток диодов генератора.
  4. Сила тока отдачи проверяется с использованием специального зонда, который является дополнением мультиметра. Он представляет собой что то на подобие зажима или клещей, которыми охватываются провода, измеряя таким образом силу тока, который проходит по проводу.

Проверка тока отдачи

  1. Чтобы измерить ток отдачи нужно охватить зондом провод, который идет к зажиму «30» («В+»).
  2. Затем, заведите двигатель и произведите измерение, во время замера мотор должен работать на высоких оборотах. Включайте электроприборы по очереди и делайте замер для каждого потребителя отдельно.
  3. Затем подсчитайте показания.
  4. Следующий тест необходимо проводить со всеми одновременно включенными потребителями энергии. Величина замера не должна быть ниже суммы показаний каждого из потребителя, когда вы измеряли каждый из них по очереди, допускается расхождение 5 А в меньшую сторону.

Проверка тока возбуждения генератора

  1. Чтобы проверить ток возбуждения генератора, заведите мотор и дайте ему высокие обороты.
  2. Расположите измерительный зонд вокруг провода, подключенного к клемме 67 («D+»), показания на приборе будут соответствовать величине тока возбуждения, на исправном электрогенераторе он будет равен — 3-7 А.

Чтобы проверить обмотки возбуждения нужно будет снять щеткодержатель и регулятор напряжения. Возможно потребуется зачистите контактные кольца, также проверьте нет ли обрывов в обмотке или замыканий на «массу».

  1. Для этого теста используется омметр, его щупы необходимо приложить к контактным кольцам, величина сопротивления при этом должна быть в пределах 5-10 Ом.
  2. После подключите один щуп омметра к любому контактному кольцу, второй щуп к статору. На исправном генераторе мультиметр будет показывать бесконечно большое сопротивление, в противном случае — обмотка возбуждения замыкает на «массу».

Видео как проверить генератор автомобиля своими руками:

Актуально:

Как работает автомобильный генератор? Как его проверить? Какие неисправности случаются?

 26.12.2019

Как работает генератор?

Принцип работы автомобильных генераторов одинаковый и основан на электромагнитной индукции. Электрический ток возникает в замкнутой рамке при пересечении ее вращающимся магнитным полем. Таким образом, для работы генератора необходимо, чтобы в нем вращалось магнитное поле.

Собственное, вращающееся магнитное поле создается ротором. Сразу отметим, что в автомобильном генераторе нет постоянных магнитов. Т.е. постоянного магнитного поля в генераторе просто нет. Однако магнитное поле появляется на обмотке ротора после подачи на него тока. Обмотка ротора правильно называется «обмоткой возбуждения». Она создает магнитное поле при повороте ключа зажигания. Далее после запуска двигателя ротор начинает вращаться. Ток вырабатывается в трех отдельных обмотках статора. Этим же током далее питается обмотка возбуждения, т.е. потребление тока от АКБ прекращается.

 

На нашем YouTube-канале вы можете посмотреть видеообзор про автомобильные генераторы.

 

Выбрать и купить генератор для интересующей вас модели автомобиля вы можете в нашем каталоге б/у запчастей.

 

 

Снятый с обмоток статора переменный ток стабилизируется в устройстве, называемом «выпрямитель», также известном как диодный мост. Благодаря ему выходной ток генератора – постоянный и выпрямленный. В нем присутствует шесть силовых диодов. Половина диодов соединена с силовым плюсом генератора, половина – с его «массой», т.е. корпусом. Также в выпрямителе могут присутствовать слаботочные диоды, через которые подключена обмотка возбуждения. Диоды – это полупроводники, которые пропускают ток только в одном направлении.

 

 

Также в генераторе есть реле-регулятор напряжения. На контакты реле с диодов приходит снятое со статора силовое напряжение. Если его недостаточно, т.е. напряжение меньше 14 Вольт, реле увеличивает напряжение на обмотке возбуждения. При усилении магнитного поля увеличивается силовое напряжение. Необходимая величина – 14-14,5 Вольт.

 

 

Здесь же добавим, что магнитное поле увеличивает усилие, с которым вращается ротор. Эта нагрузка через приводной ремень передается на коленвал. Таким образом, включение электрических потребителей и, главным образом, их общая мощность, непосредственно влияют на расход топлива.

 

Именно благодаря регулированию тока в обмотке ротора производительность генератора не зависит от скорости вращения ротора и силы тока нагрузки. Разумеется, до определенных пределов, ограниченных общей мощностью генератора. Сам по себе регулятор напряжения – чисто электронное устройство.

 

 

Ток возбуждения подается по подпружиненным графитовым щеткам, контактирующим с контактными кольцами на роторе.

 

 

На более современных автомобилях применяется бесщеточные индукторные генераторы. В них применяется отдельная неподвижная обмотка возбуждения с намагниченным магнитопроводом. Ротор представляет собой звезду с 6-ю лучами, а статор не 3-х, а 5-фазный. Такие генераторы самовозбуждаются, т.е. могут работать без АКБ.

 

Обгонная муфта генератора

Мощные генераторы оснащаются шкивом с обгонной муфтой. В данном случае она служит демпфером, который гасит инерции коленвала и самого ротора генератора, не позволяет тяжелому и нагруженному ротору генератора ударять и подгонять ремень навесного оборудования при снижении его скорости движения. Т.е. если скорость ремня падает или ремень останавливается при глушении двигателя, то ротор генератора может свободно продолжать вращаться. При неисправности обгонной муфты, т.е. ее заклинивании, во время работы двигателя можно увидеть сильную вибрацию приводного ремня возле муфты. А при остановке двигателя раздается скрип ремня – это вращающийся по инерции ротор генератора прокручивает заклинившую муфту относительно ремня.

 

 

Подключение генератора. Самые распространенные выводы и клеммы.

К проводке автомобиля генератор подключается не только силовым проводом и контактом с «массой». Силовой выход – клемма 30 – помечен буквой «B» (батарея). Отдельный минусовой контакт – клемма 31 – на генераторе обозначается буквами E, B-, GRD.

 

 

У генератора обязательно есть выход на контрольную (индикаторную) лампу. Через этот же выход подается небольшое напряжение для намагничивания ротора. Такой контакт помечен буквой «L» (лампа). Горящая лампа указывает на отсутствие зарядки. Кстати, лампочка тухнет при выравнивании потенциалов, т.е. когда на контакте L появится «плюс». Это происходит в тот момент, когда генератор начинает вырабатывать ток.

 

Также контрольная лампа может подключаться через контакт «D+». Нюанс в том, что в этом случае по этому же контакту питается регулятор напряжения. По контакту «S» (сенсор) измеряется напряжение для контроля.

 

 

На генераторах дизельных двигателей нередко присутствует контакт «W». Это выход с одной из обмоток статора, по которому подключается тахометр.

 

 

По контакту «FR» или «DFM» регулятор напряжения соединяется с ЭБУ для контроля нагрузки на генератор. Если нагрузка высока, то электроника повышает обороты холостого хода или отключает некоторые потребители.

 

На генераторе может присутствовать контакт «D» c очень разным функционалом. «D» может обозначать и Digital, и Drive. Например, по нему можете передаваться цифровой сигнал, как на автомобилях Ford. На генераторах японских автомобилей по этому контакту подается ток для управления регулятором напряжения. Также это может быть просто пустой контакт.

 

 

Почему генератор выходит из строя?

Поломки генераторов можно разделить на механические и электрические.

По механике – это нарушение вращения ротора из-за износа или разрушения подшипников. Подклинивающий генератор может привести к обрыву ремня навесного оборудования. Также может возникнуть люфт подшипников.

 

Графитовые щетки постоянно изнашиваются из-за трения с контактными кольцами на роторе. Правда, они сделаны с запасом и служат сотни тысяч км и огромное количество моточасов. Предельная длина щеток – 5 мм.

Если контакт щеток с кольцами ротора пропадает, то генератор перестает функционировать. Обмотка возбуждения не намагничивается, ток не возникает.

 

 

Диоды в выпрямителе выходят из строя из-за нагревов, вызванных перегрузками. Тут можно сказать, что есть генераторы с некорректно подобранными диодами, которые просто не служат достаточно долго. И в целом силовые диоды рассчитаны на номинальный ток с минимальным запасом.

Также отметим, что диодный мост может выйти из строя на вашем автомобиле при неправильном прикуривании. Дело в том, что из-за высокого потребления тока стартером и севшим АКБ другой машины диоды в вашем генераторе просто пробивает током. Правильно прикуривать другой автомобиль так: подсоединяетесь к его АКБ, несколько минут с заведенным двигателем подзаряжаете его, затем глушите свой двигатель, даже вынимаете ключи из замка зажигания. И только после этого позволяете пациенту завестись.

 

 

Если неисправность возникает в реле-регуляторе, то генератор не выдает достаточного напряжения. В этом случае опять же пропадает зарядка. Кроме того, реле-регулятор может стать причиной утечки тока. Для некоторых генераторов есть рекомендация менять реле-регуляторов через определенные пробеги.

Также зарядка может пропасть или отсутствовать при нагрузке в случае межвиткового замыкания.

 

 

Проверка снятого генератора без машины

Снятый и неразобранный генератор можно проверить при помощи таких вспомогательных вещей, как заряженный АКБ и некое устройство, с помощью которого можно раскрутить ротор генератора (шуруповерт или дрель с подходящей головкой). Также нужно правильно подключить индикаторы – лампы. Одна лампа грубо покажет наличие зарядки, другая покажет работоспособность реле-регулятора.

 

 

Более точные и точечные проверки проводятся на разобранном и заведомо неисправном генераторе для поиска конкретного неисправного узла.

 

Генератор на автомобиле проверяется с помощью мультиметра. Для начала необходимо замерить напряжение на самой АКБ. В идеале напряжение должно быть порядка 12,5 Вольт. После запуска двигателя напряжение на АКБ должно составлять не менее 13,8 Вольт и не более 14,5 Вольт.

 

Есть старый дедовский метод со скидыванием клеммы АКБ во время работы двигателя. Типа если двигатель не заглохнет, то генератор бодрячком. На сегодняшний день таким образом нельзя проверять работу генератора скидыванием клеммы с АКБ на работающем авто. Если так сделаете, то через пару недель пройдет пробой одного из диодов.

 

Отдельного упоминания заслуживают генераторы с подключением P-D (терминалом P-D, «импульс-управление»). Они не имеют регулятора напряжения. Регулятор находится в ЭБУ. Оттуда же подается напряжение для обмотки возбуждения. Таким образом, их нельзя проверить методом с подключением индикаторной лампы и подачи возбуждения через нее. Ее просто подключить некуда, а возбуждение подается через силовой контакт. Такие генераторы проверяются на специальном стенде или при помощи самодельного реле-регулятора, способного подать импульс на обмотку ротора.

Проверка генератора автомобиля | АВТОСТУК.РУ

Генератор — это источник в строении автомобиля, отвечающий за подзарядку автомобиля во время работы двигателя. Этот элемент настолько важен, что без него невозможно ездить. Да, если сгорел генератор, можно ехать пока не разрядится аккумулятор. При появлении нестабильности работы генератора, аккумулятор (АКБ) быстро «садится». Для того, чтобы проверить работоспособность генератора не обязательно ехать в сервис, а можно проверить в домашних условиях.

Содержание статьи:

  1. Причины выхода генератора из строя.
  2. Как проверить генератор?
  3. Видео.

 

Причины поломок генератора

Признаком поломки или временной неисправности генератора является, как мы уже сказали выше, то, что аккумуляторная батарея быстро разряжается. Признак один, а поломок может быть 4.

К ним относятся:
  • Заклинил подшипник. Подшипник — это то звено, которое находится в движении. А где есть движущиеся детали, там кончается смазка (Литол, солидол, графитовая смазка и т.д.). Исчезновение смазки приводит к заклиниванию подшипника. При заклинивании подшипника сразу рвется ремень генератора. Если ремень порвался — это признак заклинивания подшипника, но, возможно, просто износился ремень.
  • Прогорела обмотка. Электрическая обмотка прогорает при попадании химических веществ, соли, которые ее разъедают.
  • Стерлась или заела щетка. Графитовые стержни по прошествии определенного времени стираются, уменьшаются в длине. Решается простой заменой щеток.
  • Сломался реле-регулятор. Регулятор служит защитой от перезарядки АКБ и держит напряжение в заданных пределах.

Где находится обгонная муфта генератора и все, что с ней связано мы говорили еще в 2018 году.

 

Как проверить генератор своими руками

Диагностировать можно и самому. Для этого необходимо придерживаться инструкции.

Особенности диагностики:
  • Проверять электронную часть мультиметром.
  • Во время проверки состояния вентилей напряжение должно быть не больше 12 Вольт.
  • В случае замены проводки генератора, менять следует на провода такого же сечения.
  • Для самостоятельной диагностики генератора, генератор должен стоять на своем месте, собранным, ремень установлен.

Многие наверное слышали необычный свист в районе радиатора двигателя машины. Это как раз свистит ремень генератора. Причины появления свиста тоже необходимо знать.

 

Что нельзя делать при диагностике генератора:
  1. Проверять, работает генератор или нет нельзя на искру, то есть методом короткого замыкания.
  2. Соединять между собой разные клеммы. Нельзя также подключать клемму 30 или В+ к «массе».
  3. Диагностировать генератор надо после подключения потребителя энергии. Особенно этого следует придерживаться, когда аккумулятор отсоединен.

 

Способ №1 проверки генератора

Этот способ простой. Надо завести двигатель, включить ближний свет фар. С аккумулятора отсоединить клемму — минус. Если при этом двигатель не троит, то есть работает стабильно, фары горят равномерно, без скачков, то значит генератор вырабатывает ток.

Если фары начинают мигать, двигатель подтраивает, то генератор работает с перебоями.

 

Способ №2. Проверка генератора мультиметром

Без нагрузки напряжение рабочего аккумулятора должно быть в пределах 12,5-12,7 Вольт. Во время запуска ДВС на АКБ идет нагрузка, поэтому в этот момент нормальным напряжением считается то, которое находится в пределах 13,8-14,8 В. После того, как АКБ получил максимальную нагрузку, напряжение должно снизиться до 13,8 В. Если напряжение не снизилось или снизилось значительно ниже, чем 13.8, то необходимо проверять генератор.

 

Как проверить реле генератора

Для этого потребуется мультиметр в положении напряжения или Вольтметр. Проверять реле нужно только на прогретом двигателе. Если авто стояло, мотор холодный, надо завести, включить ближний свет фар и дать поработать 15 минут.

Замерять надо между клеммами «Масса» и клемма «30». Рабочее реле должно выдавать напряжение в пределах 13.5-14.6 Вольт. Если показывает меньше 13В, то необходима срочная замена.

 

Как проверить диодный мост генератора

Для его проверки, диодный мост нужно снять. И потребуется аккумулятор. Переключаем мультиметр в положении измерения сопротивления Ом. Подсоединяем массу и зажим В+ на АКБ. Прибор должен показывать не более 0.5 мА (мили Ампер). Если сопротивление показывается выше, значит вышли из строя диоды.

 

Как проверить ток отдачи

Смысл проверки — замерить, сколько тока потребляют включенные приборы. Проверяется только при подключенном ДВС.

  • Заводим мотор.
  • Увеличиваем обороты двигателя до максимума.
  • Устанавливаем зонд на провод, идущий к зажиму 30 или В+.
  • Включаем поочереди все электроприборы и записываем показатели мультиметра.
  • Сложить записанные числа.
  • Теперь надо включить все приборы и сравнить, равняется ли показания прибора с суммой измеренных по отдельности включенных приборов.
  • Норма — это когда мультиметр показывает на 5 Амперов меньше, чем сумма измеренных значений. Но, если разница токов большая, значит есть неполадки.

 

Как проверить ток возбуждения генератора

Завести двигатель. Держать обороты ДВС на максимальном уровне. Подключаем мультиметр к клемме 67. Мультиметр покажет величину тока возбуждения. Если показывает от 3 до 7 Ампер, значит все в порядке. Если меньше 3 или больше 7, то генератор неисправен.

 

Как проверить обмотку

Для этого потребуется:

  • снять держатель щеток;
  • снять регулятор напряжения;
  • зачистить концы колец;
  • проверить обмотку визуально;
  • подсоединяем щупы Омметра к контактным кольцам и статору. Нормальное сопротивления должно быть в пределах от 5 до 10 Ом.

 

Как проверить снятый генератор

Для этого потребуется измерить сопротивления, нужен Омметр или мультиметр в положении ОМ. Подсоединяем прибор к клемме 30 и к корпусу генератора. Детали генератора должны быть чистыми. Поочередно необходимо осматривать и измерять детали в генераторе. Более подробно смотрите на видео в конце статьи.

 

Видео

Как проверить автомобильный генератор своими руками в домашних условиях.

Как сделать стенд для проверки генератора за 5 минут.

Полезный совет от автоэлектрика: как удалить выработку на кольцах ротора генератора.

Автор публикации

15 Комментарии: 25Публикации: 324Регистрация: 04-03-2016

Системы и методы управления возбуждением генератора

Системы возбуждения

Системы возбуждения можно определить как систему, обеспечивающую ток возбуждения обмотке ротора генератора. Хорошо спроектированные системы возбуждения обеспечивают надежность работы, стабильность и быстрый переходный отклик.

Четыре распространенных метода возбуждения включают:

  • Шунтирующий или самовозбужденный
  • Система усиления возбуждения (EBS)
  • Генератор на постоянных магнитах (PMG)
  • Вспомогательная обмотка (AUX).
У каждого метода есть свои преимущества. Все методы используют автоматический регулятор напряжения (АРН) для подачи постоянного тока на статор возбудителя. Выход переменного тока ротора возбудителя выпрямляется на вход постоянного тока ротора главного генератора. Более продвинутые системы используют дополнительный вход для AVR. В этой статье будут рассмотрены конструкция, функции и применение каждого метода, а также приведены схемы и иллюстрации для каждого из них.

Автоматический регулятор напряжения (АРН)

Конструкция АРН зависит от используемого возбуждения.Все они получают сигнал от статора генератора, когда он вращается. АРН с возможностью приема второго входа для уменьшения или устранения внутренних гармоник, вызванных сигналами обратной связи нагрузки, используются для приложений с нелинейной нагрузкой. Обычно используются два типа:
  • Силиконовый управляемый выпрямитель (SCR) - определяет уровень мощности статора и определяет его срабатывание для напряжения возбудителя. Может вызвать проблемы при использовании с нелинейными нагрузками.
  • Полевой транзистор (FET) - определяет уровень мощности от статора и преобразует его в сигнал с широтно-импульсной модуляцией (ШИМ) на возбудитель.Этот стиль АРН может использоваться для методов возбуждения. Нелинейные нагрузки не вызывают обратной связи, приводящей к сбоям возбуждения.

Шунтирующий или самовозбуждающийся

Шунтирующий метод отличается простой и рентабельной конструкцией, обеспечивающей входное питание АРН. Этот метод не требует дополнительных компонентов или проводки. При возникновении проблем устранение неисправностей упрощается с меньшим количеством компонентов и проводки для проверки.


Когда генератор вращается, статор подает входное напряжение на АРН.Кроме того, в АРН есть датчики, контролирующие выход статора.

АРН питает возбудитель и выпрямляется до постоянного тока. Для вывода нагрузки на статор наводится ток.

Самым большим недостатком этой системы является то, что на АРН влияет нагрузка, которую питает генератор. Когда нагрузка увеличивается, напряжение начинает уменьшаться, и АРН должен подавать больший ток на возбудитель, чтобы поддерживать спрос. Это доводит AVR до предела возможностей. Если АРН выходит за его пределы, поле возбуждения схлопывается.Выходное напряжение снижено до небольшой величины.

Если произойдет короткое замыкание в цепи питания АРН, генератор не будет иметь источника возбуждения. Это вызывает потерю выходной мощности генератора.

Генераторы с шунтирующим или самовозбуждением могут использоваться при линейных нагрузках (постоянная нагрузка). Приложения с нелинейными нагрузками (переменная нагрузка) не рекомендуются для генераторов с этим методом возбуждения. Гармоники, связанные с нелинейными нагрузками, могут вызывать пробои поля возбуждения.

Система усиления возбуждения (EBS)

Система EBS состоит из тех же основных компонентов, которые подают входы и получают выходы от AVR. Дополнительные компоненты в этой системе:
  • Модуль управления усилением возбуждения (EBC)
  • Генератор усиления возбуждения (EBG).
EBG установлен на ведомом конце генератора. Внешний вид такой же, как у постоянного магнита. EBG подает питание на контроллер при вращении вала генератора.

Модуль управления EBC подключается параллельно к АРН и возбудителю. EBC получает сигнал от AVR. При необходимости контроллер подает на возбудитель различные уровни тока возбуждения на уровнях, которые зависят от потребностей системы.

Дополнительная мощность, подводимая к системе возбуждения, поддерживает требования к нагрузке. Это позволяет генератору запускаться и восстанавливать напряжение возбуждения.

Эта система возбуждения не рекомендуется для приложений с непрерывным питанием.Он предназначен для аварийного или резервного питания. При запуске генератора система EBS отключается до достижения рабочей скорости. EBG все еще генерирует мощность, но контроллер не направляет ее.

Система обеспечивает динамический отклик, дешевле и отвечает требованиям по обеспечению 300% тока короткого замыкания. Нелинейные нагрузки, такие как запуск двигателя, улучшаются по сравнению с методом шунтирования или самовозбуждения.

Генератор постоянных магнитов (PMG)

Генераторы, оснащенные постоянными магнитами, являются одними из самых известных методов с раздельным возбуждением.На ведомом конце вала генератора установлен постоянный магнит.

PMG подает изолированное питание на АРН, когда вал генератора вращается. AVR использует дополнительную мощность при питании нелинейных нагрузок, таких как: запуск двигателей.

Чистая, изолированная, непрерывная 3-фазная форма волны генерируется при вращении вала генератора.

Некоторые из преимуществ использования генераторов, оборудованных методом возбуждения PMG:

  • Поле возбуждения не схлопывается, позволяя устранить устойчивые короткие замыкания.
  • Изменение нагрузки не влияет на поле возбуждения.
  • Напряжение создается при первом запуске и не зависит от остаточного магнетизма в поле.
  • При запуске двигателя поле возбуждения не разрушается из-за отсутствия питания АРН.
Система PMG увеличивает вес и размер части генератора. Это наиболее часто используемый метод возбуждения для приложений, в которых используются двигатели, которые запускаются и останавливаются, и другие нелинейные нагрузки.

Вспомогательная обмотка (AUX)

Метод вспомогательной обмотки используется уже много лет. Область применения варьируется от морского до промышленного и более практична в более крупных установках.

Этот метод имеет отдельное поле возбуждения, однако он не использует компонент, прикрепленный к ведомому концу вала генератора. В этих методах используется вращение вала и постоянный магнит или генератор для обеспечения дополнительного возбуждения.

В статор установлена ​​дополнительная однофазная обмотка.Когда вал генератора вращается, основные обмотки статора подают напряжение на АРН, как и во всех вышеупомянутых методах.

Дополнительные однофазные обмотки подают напряжение на АРН. Это создает дополнительное напряжение возбуждения, необходимое при питании нелинейных нагрузок.

Для приложений с линейной нагрузкой можно использовать шунтирующие методы возбуждения, EBS, PMG и AUX. Шунтирующее возбуждение - наиболее экономичный метод.

Для приложений с нелинейной нагрузкой можно использовать методы возбуждения EBS, PMG и AUX.Возбуждение PMG является наиболее распространенным и широко используемым.


>> Вернуться к статьям и информации << .

Типы генераторов постоянного тока с раздельным возбуждением и самовозбуждением

Генератор постоянного тока преобразует механическую энергию в электрическую. Магнитный поток в машине постоянного тока создается катушками возбуждения, по которым проходит ток. Циркулирующий ток в обмотках возбуждения создает магнитный поток, и это явление известно как Возбуждение .

Генераторы постоянного тока

классифицируются по способам возбуждения их поля.

По возбуждению генераторы постоянного тока классифицируются как генераторы постоянного тока с отдельным возбуждением и генераторы постоянного тока с самовозбуждением.Существует также Генераторы постоянного тока с постоянным магнитом .

Генераторы постоянного тока с самовозбуждением далее классифицируются как Генераторы постоянного тока с шунтовой обмоткой ; серии генераторов постоянного тока и составных генераторов постоянного тока.

Генераторы постоянного тока с комбинированной обмоткой подразделяются на генераторы постоянного тока с длинной шунтовой обмоткой и генераторы постоянного тока с короткой обмоткой.

Полюс возбуждения генератора постоянного тока неподвижен, а провод якоря вращается.Напряжение, генерируемое в проводе якоря, имеет переменный характер, и это напряжение преобразуется в постоянное напряжение на щетках с помощью коммутатора.

В комплекте:

Подробное описание различных типов генераторов поясняется ниже.

Генератор постоянного тока с постоянным магнитом

В этом типе генератора постоянного тока нет обмотки возбуждения, размещенной вокруг полюсов. Поле, создаваемое полюсами этих машин, остается постоянным.Хотя эти машины очень компактны, но используются только в небольших размерах, таких как динамо-машины в мотоциклах и т. Д.

Основным недостатком этих машин является то, что магнитный поток, создаваемый магнитами, со временем ухудшается, что изменяет характеристики машины.

Генератор постоянного тока с независимым возбуждением

Генератор постоянного тока, обмотка или катушка которого возбуждается от отдельного или внешнего источника постоянного тока, называется генератором постоянного тока с отдельным возбуждением. Поток, создаваемый полюсами, зависит от тока поля с ненасыщенной областью магнитного материала полюсов.т.е. поток прямо пропорционален току возбуждения. Но в насыщенной области поток остается постоянным.

Рисунок самовозбуждающегося генератора постоянного тока показан ниже:

Генератор постоянного тока с независимым возбуждением

Здесь,

I a = I L , где I a - ток якоря, а I L - линейный ток.

Напряжение на клеммах определяется как:

Если известно падение контактной щетки, то уравнение (1) записывается как:

Развиваемая мощность определяется уравнением, показанным ниже:

Выходная мощность определяется уравнением (4), приведенным выше.

Генератор постоянного тока с самовозбуждением

Самовозбуждающийся Генератор постоянного тока - это устройство, в котором ток на обмотку возбуждения подается самим генератором. В самовозбуждающемся генераторе постоянного тока катушки возбуждения могут быть подключены параллельно якорю последовательно, или он может быть включен частично последовательно и частично параллельно обмоткам якоря.

Генератор постоянного тока с самовозбуждением дополнительно классифицируется как

Шунтирующий генератор

В генераторе с шунтирующей обмоткой, обмотка возбуждения подключена поперек обмотки якоря, образуя параллельную или шунтирующую цепь.Следовательно, на него подается полное напряжение на клеммах. Через него протекает очень небольшой ток возбуждения I sh , потому что эта обмотка имеет много витков тонкой проволоки с очень высоким сопротивлением R sh порядка 100 Ом.

Схема подключения шунтирующего генератора представлена ​​ниже:

Генератор постоянного тока с шунтирующей обмоткой

Ток возбуждения шунта определяется как:

Где R sh - сопротивление шунтирующей обмотки возбуждения.

Поле тока I sh практически постоянно при всех нагрузках. Следовательно, шунтирующая машина постоянного тока считается машиной с постоянным магнитным потоком.

Ток якоря определяется как:

Напряжение на клеммах определяется уравнением, показанным ниже:

Если учитывается падение на щеточном контакте, уравнение напряжения на клеммах становится


Генератор обмоток серии

Генератор с последовательной обмоткой Катушки возбуждения включены последовательно с обмоткой якоря.По последовательной обмотке возбуждения проходит ток якоря.

Обмотка последовательного возбуждения состоит из нескольких витков толстой проволоки с большим поперечным сечением и низким сопротивлением, обычно порядка менее 1 Ом, поскольку ток якоря имеет очень большое значение.

Его конвекционная диаграмма показана ниже:

Генератор постоянного тока серии

Ток возбуждения серии

определяется как:

R se известен как сопротивление последовательной обмотки возбуждения.

Напряжение на клеммах определяется как:

Если учитывается падение на щеточный контакт, уравнение напряжения на клеммах записывается как:

Поток, создаваемый последовательной обмоткой возбуждения, прямо пропорционален току, протекающему через нее. Но это верно только до магнитного насыщения после того, как поток насыщения становится постоянным, даже если ток, протекающий через него, увеличивается.

Генератор комбинированной раны

В генераторе с составной обмоткой есть две обмотки возбуждения.Один включен последовательно, а другой - параллельно обмоткам якоря. Есть два типа генераторов с составной обмоткой.

      • Генератор с длинной шунтовой обмоткой
      • Короткий шунтирующий генератор с комбинированной обмоткой

Для подробного изучения генератора составной обмотки см. Раздел «Генератор составной обмотки».

См. Также: Генератор комплексной обмотки

.

Что происходит при пропадании синхронного генератора возбуждения

Во время нормальной работы синхронного генератора или генератора переменного тока возбуждение ротора обеспечивается небольшим генератором постоянного тока, работающим на одном валу вместе с основным генератором. Когда синхронный генератор выдает мощность в сеть или нагрузку, он передает в систему как активную, так и реактивную мощность. Реактивная мощность - это намагничивающая мощность, которая помогает передавать реальную мощность от источника к нагрузке, а также реактивная мощность помогает улучшить напряжение системы.Практически все нагрузки (кроме емкостных) в энергосистеме потребляют от системы реактивную мощность. Генераторы, синхронные конденсаторы и конденсаторные батареи, подключенные к энергосистемам, являются единственными источниками реактивной мощности.

Реальная мощность, отдаваемая генератором (выходная мощность МВт), регулируется первичным двигателем, а отдаваемая реактивная мощность (выходная мощность в МВАр) регулируется возбуждением поля. Когда возбуждение поля в синхронном генераторе теряется, синхронный генератор работает как индукционный, и вместо выработки реактивной мощности он поглощает реактивную мощность из системы, в 2–4 раза превышающей номинальную нагрузку генератора.Однако реальная мощность (выходная мощность в МВт), выдаваемая индукционным генератором, останется почти такой же, поскольку она контролируется первичным двигателем. Но потеря реактивной мощности генератора в системе может вызвать нестабильность системы. Кроме того, поскольку генератор переменного тока работает как индукционный, большие токи наводятся на зубья и клинья ротора и могут повредить ротор генератора. Однако большие генераторы переменного тока рассчитаны на то, чтобы выдерживать эти индуцированные токи.

Немедленное отключение генератора в случае потери возбуждения не требуется, если напряжение на клеммах генератора не упадет ниже желаемого предела из-за падения напряжения.Реле потери возбуждения (40G) используется для определения потери возбуждения.

.

Что такое система возбуждения? Определение и типы системы возбуждения

Определение: Система, которая используется для подачи необходимого тока возбуждения в обмотку ротора синхронной машины, такой тип системы называется системой возбуждения. Другими словами, система возбуждения определяется как система, которая используется для создания магнитного потока путем пропускания тока в обмотке возбуждения. Основное требование к системе возбуждения - надежность при любых условиях эксплуатации, простота управления, легкость обслуживания, стабильность и быстрая реакция на переходные процессы.

Требуемая величина возбуждения зависит от тока нагрузки, коэффициента мощности нагрузки и скорости машины. Чем больше возбуждения требуется в системе, когда ток нагрузки велик, скорость меньше и коэффициент мощности системы становится запаздывающим.

Система возбуждения представляет собой единый блок, в котором каждый генератор переменного тока имеет свой возбудитель в виде генератора. Централизованная система возбуждения имеет два или более возбудителя, питающих шину. Централизованная система стоит очень дешево, но неисправность в системе отрицательно сказывается на генераторах переменного тока на электростанции.

Типы систем возбуждения

Системы возбуждения в основном подразделяются на три типа. Их

  1. Система возбуждения постоянного тока
  2. Система возбуждения переменного тока
    • Система возбуждения ротора
    • Бесщеточная система возбуждения
  3. Система статического возбуждения

Их типы подробно описаны ниже.

1. Система возбуждения постоянного тока

Система возбуждения постоянного тока имеет два возбудителя - основной возбудитель и пилотный возбудитель.Выход возбудителя регулируется автоматическим регулятором напряжения (АРН) для управления выходным напряжением на клеммах генератора. Вход трансформатора тока в АРН обеспечивает ограничение тока генератора переменного тока во время повреждения.

Когда выключатель возбуждения разомкнут, резистор разряда возбуждения подключается к обмотке возбуждения, чтобы рассеивать накопленную энергию в обмотке возбуждения, которая имеет высокую индуктивность.

Главный и пилотный возбудители могут приводиться в движение главным валом или отдельно от двигателя.Возбудители с прямым приводом обычно предпочтительны, так как они сохраняют единицу работы системы и возбуждение не возбуждается внешними помехами.

Номинальное напряжение главного возбудителя составляет около 400 В, а его мощность составляет около 0,5% от мощности генератора переменного тока. Неполадки в возбудителях турбогенератора довольно часты из-за их высокой скорости, поэтому отдельные возбудители с приводом от двигателя используются в качестве резервного возбудителя.

2. Система возбуждения переменного тока

Система возбуждения переменного тока состоит из генератора переменного тока и тиристорного выпрямительного моста, напрямую подключенных к главному валу генератора.Главный возбудитель может быть самовозбужденным или отдельно возбужденным. Систему возбуждения переменного тока можно в общих чертах разделить на две категории, которые подробно описаны ниже.

а. Вращающаяся тиристорная система возбуждения

Система возбуждения ротора показана на рисунке ниже. Вращающаяся часть обведена пунктирной линией. Эта система состоит из возбудителя переменного тока, стационарного поля и вращающегося якоря. Выход возбудителя выпрямляется двухполупериодной схемой тиристорного мостового выпрямителя и подается на обмотку возбуждения главного генератора.

Обмотка возбуждения генератора также запитана через другую схему выпрямителя. Напряжение возбудителя можно увеличить, используя его остаточный поток. Блок управления источником питания и выпрямителем генерирует управляемый пусковой сигнал. Сигнал напряжения генератора усредняется и сравнивается напрямую с настройкой напряжения оператором в автоматическом режиме работы. В ручном режиме работы ток возбуждения генератора сравнивается с отдельной ручной регулировкой напряжения.

г. Бесщеточная система возбуждения

Эта система показана на рисунке ниже. Вращающаяся часть обведена прямоугольником из пунктирной линии. Бесщеточная система возбуждения состоит из генератора, выпрямителя, главного возбудителя и генератора переменного тока с постоянными магнитами. Главный и пилотный возбудители приводятся в движение главным валом. Главный возбудитель имеет стационарное поле и вращающийся якорь, напрямую подключенные через кремниевые выпрямители к полю главных генераторов переменного тока.

Пилотный возбудитель - это приводимый от вала генератор с постоянными магнитами, имеющий вращающиеся постоянные магниты, прикрепленные к валу, и трехфазный неподвижный якорь, который питает поле основного возбудителя через кремниевые выпрямители в поле главного генератора переменного тока. Пилотный возбудитель представляет собой генератор постоянных магнитов с приводом от вала, имеющий вращающиеся постоянные магниты, прикрепленные к валу, и трехфазный стационарный якорь, который питает главный возбудитель через трехфазные двухполупериодные тиристорные мосты с фазовым управлением.

Система исключает использование коммутатора, коллектора и щеток, имеет короткую постоянную времени и время отклика менее 0,1 секунды. Короткая постоянная времени имеет преимущество в улучшенных динамических характеристиках слабого сигнала и облегчает применение дополнительных сигналов стабилизации энергосистемы.

3. Система статического возбуждения

В этой системе питание берется от самого генератора через трехфазный понижающий трансформатор, подключенный по схеме звезда / треугольник.Первичная обмотка трансформатора подключена к шине генератора, а вторичная обмотка подает питание на выпрямитель, а также подает питание на схему управления сетью и другое электрическое оборудование.

Эта система имеет очень малое время отклика и обеспечивает отличные динамические характеристики. Эта система снизила эксплуатационные расходы за счет устранения потерь на сопротивление воздуха в возбудителе и необходимости технического обслуживания обмоток.

.

Как использовать генераторы и yield в Python - Real Python