Какое напряжение должен выдавать генератор


Сколько вольт должен выдавать генератор на аккумулятор: нормальная зарядка АКБ

В автомобиле за зарядку аккумулятора отвечает автомобильный генератор. Фактически, это устройство, которое приводится от двигателя и преобразует механическую энергию в электрическую. В свою очередь, АКБ автомобиля, расходуя часть заряда на запуск двигателя и на поддержание питания в бортовой сети, когда двигатель заглушен, нуждается в активной подзарядке. 

Если система исправна, аккумулятор подзаряжается от генератора, при этом не происходит как недозаряда аккумуляторной батареи, так и перезаряда. Однако в процессе эксплуатации автомобиля по ряду причин могут возникать неполадки. Результат- аккумулятор  выходит из строя. При этом  «здоровье» батареи ухудшается во всех случаях (если батарея сильно разряжена, имеет место постоянный разряд,  если перезаряжена, аккумулятор кипит).

Так или иначе, в подобной ситуации необходима диагностика. Далее мы рассмотрим, сколько выдает генератор автомобиля в норме, почему генератор не дает зарядку на АКБ, по каким причинам возникает перезаряд, какое напряжение должно быть на аккумуляторе и т.д.

Содержание статьи

Сколько выдает генератор: на что обратить внимание

Прежде всего, если возникли проблемы с АКБ, поверять нужно как аккумулятор, так и генератор. Более того, часто бывает так, что генератор на первый взгляд нормально работает, однако аккумулятор недостаточно заряжается или заряд батареи высокий, что приводит к закипанию электролита. В этом случае важно определить, какая зарядка генератора идет на АКБ. Другими словами, необходимо знать, как проверить генератор.

Что касается основных симптомов, признаки неисправности генератора следующие:

Проверка начинается с осмотра ремня привода генератора и его натяжения, а также анализа работоспособности других элементов (проводка, клеммы, соединения, ролики и шкивы ремня генератора и т.д.). Если замечаний нет, тогда следует оценить, как работает сам генератор, нет ли посторонних шумов при вращении ротора.

В том случае, когда отклонений от нормы не выявлено, можно переходить к замерам напряжения и силы тока. Замерить необходимо напряжение, силу тока, сопротивление. Чтобы выполнить замеры, следует иметь под рукой мультиметр или вольтметр (можно использовать и нагрузочную вилку).

  • Итак, в норме на аккумулятор с генератора должно приходить 5—14.5В. Это и есть тот показатель, который обязан выдавать генератор на АКБ. Если заряд генератора отличается, тогда это указывает на проблемы с узлом.

Для замера нужно учитывать, как проверить напряжение генератора на аккумуляторе. Для этого есть два способа – можно выполнить замер на генераторе, а также через АКБ. Дело в том, что генератор напрямую связан с батареей и разницу потенциалов вполне можно измерить прямо на батарее.

Проще всего использовать мультиметр, который подключается к АКБ в любой последовательности. Если же использовать вилку нагрузочную, она должна быть соединена с клеммами АКБ, при этом строго соблюдается полярность.

Так вот, нормой по напряжению в сети должен быть показатель не ниже 12 вольт. Если завести двигатель, в режиме ХХ  и отключенных энергопотребителях  напряжение на аккумуляторе должно быть 13.5-14В. Если заметно снижение показателей (например, до 13.3-13.8 вольта), это явное отклонение от нормы, указывающее на неполадки.

  • Еще полезной может быть информация, сколько ампер выдает генератор на аккумулятор. Фактически, это сила тока, причем на разных авто она отличается в зависимости от электропотребителей. При этом ток заряда должен быть таким, чтобы обеспечивать работу сети и заряжать АКБ.

Чтобы замерить данный показатель, необходимо создать нагрузку в бортовой сети автомобиля (включить «тяжелые» энергопотребители) после запуска ДВС. После того, как мотор запущен и потребители выключены, ток заряда 6—10 ампер, далее показатель снижается, так как идет заряд АКБ. Если же включить габариты, фары, обогрев стекол, сидений, зеркал, тогда происходит повышение зарядного тока. Если этого не происходит, опять же, очевидна неисправность.

Обратите внимание, для точного определения того, какой должна быть сила тока при той или иной нагрузке, можно воспользоваться таблицей (таблица часто встречается на профильных форумах, в специализированной литературе и т.д.). В ней содержатся данные, которые должен выдавать генератор при разной нагрузке. Характеристики генератора привязаны к количеству оборотов двигателя, то есть устройство на разных оборотах должно вырабатывать разный ток.

Еще добавим, что также не лишним будет проверить сопротивление составных компонентов генератора  (ротор, статор и диодный мост). Что касается ротора, замер сопротивления осуществляется на обмотке. Если просто, щупы мультиметра соединяют с контактными кольцами (показания от 2.3 до 5.1 Ом укажут на то, что элемент исправен). Если обмотка потребляет ток в рамках от 3 до 4.5 ампер, тогда это норма. Рабочее сопротивление  должно быть 0.2 Ома.

Для проверки диодного моста необходимо определить, присутствует или отсутствует сопротивление, при этом сами показатели не важны. Главное, чтобы не было «нулевых» показателей. Мерить нужно попарно (плюс и все пластины на этой стороне/минус и все пластины на его стороне).

Не дает зарядку генератор: причины

Еще раз отметим, нормально работающий генератор осуществляет полное восполнение уровня заряда АКБ, при этом заряд под нагрузкой уменьшается.  При этом в общей схеме есть много элементов, которые могут стать причиной нарушения заряда АКБ. Зачастую, проблемы возникают как по механической части (привод генератора, подшипники и т.д.), так и по части электрики (обрыв или замыкание обмоток, выгорание диодного моста, износ щеток, пробои). Отдельно следует проверять и реле-регулятор генератора.

Так или иначе, важно найти проблемный элемент. Отметим, что обычно подавляющее большинство поломок генератора или проблем с зарядкой АКБ можно устранить (выполнив замену ремня привода, роликов, осуществив ремонт генератора, проведя ревизию контактов, клемм и других элементов). Однако есть поломки, которые становятся основанием для замены всего генератора в сборе.

Также часто встречается ситуация, когда генератор исправен, АКБ в норме, однако все равно имеет место низкое напряжение. Более того, диагностика при помощи рассмотренных выше методов может не выявить неполадок. В таком случае отдельное внимание следует уделить клеммам аккумулятора.

Клеммы должны сидеть плотно, не допускается их окисление. То же самое касается и электропроводки. Все провода должны быть целыми, а контакты надежно закрепленными и чистыми. Кстати, важно периодически зачищать контакты от окисления, так как ток будет хуже проходить через окисленные выходы.

Еще не следует исключать ошибки, которые могут быть допущены в рамках обслуживания генератора. Неправильные подключения контактов  могут  стать причиной сбоев в работе генератора, разряда АКБ и других неисправностей.

Что в итоге

С учетом приведенной выше информации становится понятно, что  если начались проблемы с АКБ, часто причиной неполадок является именно генератор, а не аккумуляторная батарея. При этом проверять генератор нужно комплексно (щетки генератора, контактные кольца, обмотка, реле генератора, проводка, клеммы и т.д.)

Обратите внимание, слишком высокая нагрузка на генератор (например, при установке мощных нештатных потребителей электроэнергии) во многих случаях является причиной быстрого выхода генератора из строя. Чтобы избежать проблем (особенно при выборе нового генератора), нужно отдельно учитывать некоторые особенности.

Сколько должен выдавать генератор для нормальной зарядки аккумулятора

Очень часто автомобилисты сталкиваются с такой проблемой, что напряжение в бортовой сети автомобиля стало меньше положенного.

Узнать об этом можно, как по показаниям с приборной панели, так и по косвенным признакам, таким, как тусклый или мерцающий свет фар, нестабильная работа различных электроприборов или плохой запуск двигателя.

Часто на приборке может гореть значок аккумулятора. При этом большинство водителей сразу подозревает неисправность генератора, если АКБ в норме. Но так ли это на самом деле и как найти причину почему генератор выдает низкое напряжение?

Сколько должен выдавать генератор для нормальной зарядки аккумулятора

Стоит напомнить, что нормальным считается напряжение в бортсети не менее 14 Вольт. Но показания на приборной панели могут быть неточными.

И, даже если это значение немного меньше, возможно, всё нормально. Это – просто погрешность. Но в таком случае и никаких проявлений неисправности не будет.

Проверьте провода!

Если всё-таки напряжение низкое, первым делом стоит осмотреть контакты на аккумуляторной батарее и генераторе. Возможно, контакты окислились или соединение неплотное. Тогда нужно просто почистить эти места от окислов и получше затянуть клеммы либо поменять их.

Также легко заметить и повреждения проводов. В таком случае их следует заменить.

Проверить генератор мультиметром

Если никаких внешних повреждений не обнаружено, следует взять мультиметр и измерить напряжение на клеммах аккумулятора и на генераторе. Для этого прибор необходимо перевести в режим вольтметра и установить значение 20 Вольт.

После запуска двигателя напряжение на клеммах аккумуляторной батареи должно быть не меньше 13,6 Вольт, а лучше – 14 Вольт и более. Далее нужно провести измерения на клемме генератора. Это – большой болт. Если и там значение низкое, то генератор неисправен. Если же в норме, значит, виновата проводка или АКБ.

Почему генератор выдает низкое напряжение

Самой распространённой неисправностью генератора является выход из строя реле регулятора напряжения (таблетка). Эта деталь обычно стоит недорого. А заменить её не составляет особого труда.

Чтобы проверить регулятор, нужно снять генератор и щётки. Между ними необходимо подключить любую лампу на 5 Ампер. При этом на минус подать минус от аккумулятора, на плюс – соответственно плюс от него же.

Лампочка при исправном генераторе должна загореться несколько слабее, чем при подключении напрямую к батарее. Если она горит сильнее или слабее – регулятор напряжения следует заменить.

Также у генератора часто выходит из строя диодный мост. Но могут подвести и другие его детали. Без соответствующего опыта и знаний заниматься их заменой нежелательно.

Поэтому в таком случае лучше обратиться к автоэлектрику для диагностики и ремонта узла. В некоторых случаях его целесообразнее не ремонтировать, а заменить.

какое напряжение должен выдавать генератор при полной загрузке?

Ответ: какое напряжение должен выдавать генератор при полной загрузке?

Конечно «Человеку свойственно ошибаться» (машины, генераторы разные, НТП не стоит на месте…), но поскольку всех нас объединяют особо неизменившееся по своему принципу одни и те же аккумуляторные батареи, то информация найденная мной и проверенная на моем личном опыте скорее кому-то поможет, чем навредит

Для начала.

Guru сказал(а):

Уменьшение напряжения при прогреве...хм..логичных объяснений не нахожу..

Нажмите, чтобы раскрыть...

Зачет! Не должно так быть! А тем более падать до 12,2. По Ельзе, если после простоя в 2 часа напряжение на батарее з заглушенным мотором падает ниже 12,5В, то это – проблема! А тут мотор заведен, и такое…
<O

Rash сказал(а):

c напряжением все нормально, такая разница от аккумулятора

Нажмите, чтобы раскрыть...

<O
По-моему тоже дело в аккумуляторе , а именно в его хроническом недозаряде. Где-то читал, что для восстановления отданной аккумулятором энергии во время холодного пуска при минусовых температурах, нужно проехать около 50 км. Езда изо дня в день на короткие расстояния с большим количеством потребителей не дает аккумулятору полностью зарядиться. Соответственно сопротивление батареи низкое, а падение напряжения большое. Почему и не рекомендуется ставить аккумуляторы большей емкости, чем те, на которые рассчитан генератор. Кстати, при такой эксплуатации идет безвозвратная реакция сульфатации части недозаряжаемых пластин (уменьшение емкости, до той которую «тянет» гена) и сокращение срока службы аккумулятора. В таком случае, «книга» рекомендует проводить зарядку батареи зарядным устройством (в идеале малым током циклично с небольшой нагрузкой до полного восстановления плотности вплоть до 3-5 суток). Обязательно проводить полную зарядку батареи зарядным устройством, если случаем ее довелось посадить под ноль! На автомобиле сделать это почти не реально (нужна длительная поездка на расстояние 1000-2000км).

<O

audimaxx сказал(а):

У меня та же фигня, на холодную 14 вольт, как прогреется 12,5-13. Не пойму в чем дело? При чем тут аккумулятор?

Нажмите, чтобы раскрыть...


<OА если поднять обороты двигателя на прогретом, неужели напряжение не поднимается? Может просто при прогреве мотор то работает на повышенных оборотах, поэтому гена выдает больший ток, которого хватает и для потребителей , и для аккумулятора (он в данном, хронически недозаряженом состоянии тоже потребитель)? Только смотреть все-таки надо на клеммах. Тут точность нужна до 0,1В. От этого напрямую зависит идет ток в батарею или из нее. А параллельно штатному вольтметру, на тех же проводах, может, на пример, висеть какой-то потребитель и показания его из-за немного увеличившегося сопротивления в данной области проводки, соответственно будут «плавать». Короче, вольтметр на панели просто ОРИЕНТИР!
<O

sssyy сказал(а):

У меня на всех режимах и нагрузках фсегда 14,2.

Нажмите, чтобы раскрыть...

<OЕсли это правда (повторюсь, роль играет каждая десятая вольта по этому нужно быть уверенным в показаниях прибора!) - это тоже не есть гуд. Аккумулятор будет подвыкипать, особенно летом. Стоит особое внимание обращать на уровень электролита, или просто может даже заменить «таблетку».
<O

audimaxx сказал(а):

а еще в дождь вообще до 12 падает, но это согласно доп датчику

Нажмите, чтобы раскрыть...

Если батарея грязная, то слой влаги в грязи «подкорачивает» клеммы. Или может еще где-то коротит водичка…<O
Желаю всем успешно победить в борьбе за вольты..

 

Какое напряжение должен выдавать генератор ВАЗ-2114: сколько Вольт

Предназначение любого генератора, в том числе и установленного на ВАЗ-2114 – это реформация энергии, которую вырабатывает мотор автомобиля в электрический ток, который необходим для питания всех систем и элементов, нуждающихся в этом.

На видео рассказано как проверить какое напряжение выдаёт генератор на аккумулятор:

В этой статье, мы подробно расскажем вам, подробно о генераторе в целом, его конструкции, принципе работы, основных неполадках, способах их устранения, а также какое напряжение должен выдавать такой агрегат, находясь в исправном состоянии.

Принцип работы генератора на ВАЗ-2114

Для того, чтобы преобразовать один вид энергии получаемого от двигателя в другой, создаваемый генератором необходимо наличие магнитного поля. А для того, чтобы создать все условия для его появления, в генераторе находятся два основных и очень важных элемента – это ротор и статор.

Ротор и статор генератора

 

  • Ротор в генераторе, представляет собой подвижный элемент, оборудованный стальным сердечником с наконечниками. На этих наконечниках находятся специальные катушки для возбуждения, к которым и выведено внешнее питания.
  • Статор, представляет по своей конструкции кольцо, неподвижное по принципу работы, собранное из индивидуальных стальных элементов, изолированных от обмотки. Внутри статора расположена обмотка из достаточно толстой медной проволоки.

Вышеназванные элементы генератора собраны воедино, внутри металлического корпуса, в котором вместе с ними находятся подшипники, осуществляющие должное вращение ротора, крыльчатки, шкив, диодный мост, а также регулятор напряжения.

  • Шкив – это непосредственно привод агрегата, на который одевается ремень, передающий энергию двигателя.
  • Подшипников в генераторе – два, передний и задний. В случае выхода из строя заднего подшипника, его можно просто заменить, чего нельзя сделать с передним, так как он запрессован непосредственно в корпус, и при поломке, замене подлежит вся часть корпуса генератора.

Корпус агрегата имеет две съёмных части, переднюю и заднюю, которые фиксируются с помощью болтов. Точно также фиксация осуществляется и статору, только она уже находится на внутренней части корпуса.

Конструкция генератора ВАЗ-2114

Особенности эксплуатации

Генератор на ВАЗ-2114 достаточно неприхотливое устройство, способное выдержать большие нагрузки даже в самых суровых условиях эксплуатации, если выполняются все правила по его эксплуатации.

Во время его работы, необходимо соблюдать такие элементарные правила:

  • Не допускайте случаев работы генератора, когда клеммы с аккумуляторной батареи отключены. Это связано с тем, что в отсутствии АКБ, будут наблюдаться постоянные всплески электрической энергии в сети, что может негативно сказаться на всех приборах и состоянии генератора в частности.
  • Во время проведения сварочных работ на автомобиле, следите за тем, чтобы провода были отключены не только с АКБ, но и с генератора.
  • Обращайте внимание на то, чтобы все провода были подключены согласно полярности, потому как неверное включение проводов даже на короткий срок может вывести всю систему из рабочего состояния.
  • Проверка работоспособности генератора должна проводиться только в строгом порядке выполнения работ (указана ниже — прим.).

Как проверить напряжение генератора на аккумуляторе ВАЗ-2114?

Проверять рабочее состояние генератора на ВАЗ-2114 следует каждые 6 месяцев (лучше всего до и после зимы – прим.), потому как именно в зимнее время на электрическую сеть приходятся повышенные нагрузки. Проверку необходимо проводить независимо от того, исправен он или нет.

Важность проверки генератора высока, потому как если он не способен выдать заряд определённой мощности, то аккумуляторная батарея просто-напросто разрядится и автомобиль не сможет запуститься, а если напряжение чрезмерно высокое, то неполадки могут возникнуть непосредственно в проводке и цепи автомобиля.

Признаки неисправности генератора

Если на вашем автомобиле появилось одно или несколько ниженазванных признаков, то генератор необходимо проверять:

  • Исходит посторонний шум или гул со стороны генератора. Шум будет свидетельствовать о том, что вышли из строя подшипники (в большинстве случаев ломается передний – прим.). Ездить с такой поломкой нельзя, потому как его заклинивание может привести к выходу из строя всего генератора, после разрушения подшипника.
  • На панели приборов, сигнальная лампа АКБ светит слишком ярко, даже когда мотор не работает – это будет говорить о переизбытке энергии в сети.

    Лампа горит ярче обычного.

  • Лампа АКБ не горит, не работают поворотники и другие электрические приборы – это происходит потому, что на АКБ не поступает энергия, ввиду нерабочего генератора.

Пошаговый порядок проверки генератора

  1. Включаем зажигания и обращаем внимание на то, чтобы все лампочки приборной панели горели.
  2. Заводим автомобиль, и если генератор работает в штатном режиме, сигнальная лампа АКБ должна погаснуть.
  3. Дожидаемся, пока автомобиль нагреется до своей стандартной рабочей температуры в 90 °С.
  4. Когда он нагрелся, необходимо максимально нагрузить сеть. Для этого запускаем всё, что есть в автомобиле, включая обогрев зеркал, свет, музыку и прочее.
  5. Берём заранее подготовленный мультиметр и переставляем его в режим проверки «вольтажа».
  6. Далее зовём помощника и просим его держать на холостом ходу обороты двигателя (в пределах 3500 – прим.).
  7. Воспользовавшись мультиметром, подключаем его щупы к АКБ, и в тот, момент когда включены все потребители, показания не должны опускаться ниже – 13-13,2 В.

Если показания, на таких оборотах двигателя меньше, то это будет обозначать то, что генератор не вырабатывает необходимое количество энергии. А когда они в норме, то продолжаем тестирование, на выключенных потребителях на тех же самых оборотах. В этом случае показания мультиметра должны быть порядка 14,5-14,7 В.

Проверка напряжения, которое выдаёт генератор

После диагностики аккумуляторной батареи, переходим непосредственно к генератору, используя тот же мультиметр.

  1. Когда автомобиль заведён, подключаем щупы к его выводам, при этом напряжение должно быть не менее 14-14,3 Вольт.
  2. Далее, при наборе оборотов, следим за показаниями приборов, на котором значения не должны измениться более чем на 0,5 вольт. Если подобного не наблюдается, то это будет означать, что генератор и регулятор напряжения функционируют правильно.

    На лицо избыток перенапряжения в сети.

Теперь, достоверно располагая сведениями, сколько вольт должен выдавать генератор, вы будете точно знать, исправен он или нет. И если показания несколько отличаются от нормы, то в первую очередь вам следует обратить внимание на неисправности описанные ниже.

Причины низкого напряжения

Если при максимальной нагрузке напряжение, ниже 13 вольт, необходимо обращать внимание на следующее:

  • Натяжение ремня генератора недостаточное. Ремень не должен продавливаться пальцем больше чем на сантиметр.
  • На проводке в цепи генератора имеются окисления, либо потёртостей проводов.
  • Вышли из строя щётки генератора.
  • Регулятор напряжения сломан.
  • Износились подшипники.
  • Сгорел предохранитель.

Заключение

В любом случае, при наличии той или иной неисправности, в зависимости от сложности поломки вам необходимо выбрать, производить работы самостоятельно, либо обратиться в специализированный автосервис.

Какое напряжение должен выдавать генератор автомобиля

Любой автомобиль с двигателем внутреннего сгорания оснащен генератором электрического тока (ГЭТ). Главной задачей ГЭТ является генерировать достаточный ток для пополнения заряда аккумулятора, искрообразования на свечах зажигания (кроме дизельного двигателя) и питания других бортовых систем автомобиля. В данном случае для генерирующего устройства важны 2 параметра – напряжение и номинальный или максимальный ток. Какое напряжение должен выдавать генератор, чтобы его хватало для зарядки аккумулятора при работе двигателя определить не сложно, так как это стандартный показатель 13,5-14,5 В.

Какое напряжение выдает генератор автомобиля

Вращение якорю генератора передается от коленчатого вала двигателя ремнем передачи, а частота вращения в зависимости от текущего режима колеблется от 800 до 6000 оборотов в минуту. Для генераторов постоянного тока напряжение напрямую зависит от частоты вращения, однако в случае с автомобильным генератором выходное напряжение всегда остается постоянным при любых оборотах якоря. Эта особенность объясняется устройством генерирующего устройства, которое, по сути, является генератором не постоянного тока, а переменного.

Вентильный генератор в своей принципиальной схеме предусматривает выпрямитель и генерированный переменный ток выпрямляется в постоянный через диодный мост. В конструкции также предусмотрен стабилизатор напряжения, встроенный в щеточный узел генератора или выполненный в виде отдельного узла. Стабилизация напряжения важна для нормальной работы аккумулятора. Ведь от того какое напряжение в генераторе автомобиля и соответствует ли оно норме зависит долговечность работы АКБ.

В конечном итоге какое напряжение должен выдавать автомобильный генератор определяется необходимым показателем для нормальной подзарядки аккумулятора, а не оборотами двигатели или какими-то другими факторами.

На что влияют обороты двигателя

Разобравшись какое напряжение выдает автомобильный генератор, остается определиться с током, который напрямую зависит от оборотов якоря. При этом следует учитывать, что любой генератор имеет ограничение по току и не может выдать больше как бы не наращивались обороты ротора. Таким образом, по токовым показателям можно выделить 3 режима – это минимальный, номинальный и максимальный ток.

За минимальный показатель принимается ток при холостых оборотах двигателя (обычно 1500—1800 об/мин) и он (минимальный ток) должен составлять 40-50% от номинального показателя. Номинальный ток – это показатель, при котором узлы генератора нагреваются в пределах допустимых норм. При этом номинальный ток близок к максимальному. Именно этот показатель указывается в паспортных данных устройства и на корпусе самого генератора. Для отечественных моделей генераторов номинальный ток достигается при 500 об/мин.

При выборе генератора не следует руководствоваться какое напряжение должен выдавать генератор автомобиля, так как оно одинаково для всех моделей. За главный показатель принимается номинальный ток генератора, который должен соответствовать 200% от емкости аккумулятора с небольшим допустимым отклонением 10-15%. Не рекомендуется также устанавливать на автомобиль аккумулятор большей емкости, так как он не будет достаточно восстанавливать заряд от уже используемого генератора.

Читайте также:

Параметры фазы и напряжения генератора

Прежде всего при принятии решения о том, какой тип генератора лучше всего подходит для вашей среды, необходимо убедиться, что вы выбрали правильную электрическую конфигурацию. Электрическая конфигурация обычно включает фазу, напряжение, кВт и герц, которые лучше всего подходят для вашего приложения. Чтобы объяснить, как работают фазы и напряжение, полезно понять, что включает в себя генераторная установка. Генераторная установка (также известная как генераторная установка) состоит из двух основных компонентов - промышленного двигателя (обычно дизельного, природного газа или пропана) и части генератора.Двигатель вырабатывает мощность и обороты, а конец превращает их в электричество.

Объяснение фаз

Однофазные генераторы - для небольших однофазных нагрузок эти генераторы обычно не превышают 40 кВт. Они обычно используются в жилых помещениях и имеют коэффициент мощности 1,0.

Трехфазные генераторы - в основном для более крупных промышленных предприятий, эти генераторные установки могут обеспечивать как однофазное, так и трехфазное питание для работы промышленных двигателей с большей мощностью, отводить питание для отдельных линий и в целом более гибкие.Обычно они используются в коммерческих средах и имеют коэффициент мощности 0,8.

Увеличьте номинальную выходную мощность - вы можете преобразовать однофазную мощность в трехфазную и иногда получить номинальную выходную мощность примерно на 20-30%, но конец необходимо повторно подключать, а также необходимо учитывать нагрузку балансы и несколько других переменных.

Снижение номинальной мощности (преобразование из трехфазной в однофазную) - обычно снижает номинальную выходную мощность в кВт примерно на 30%.Например, трехфазный генератор мощностью 100 кВт упадет примерно до 70 кВт при преобразовании в однофазный.

• Чтобы точно рассчитать скорректированную мощность, которую вы получите после снижения номинальной мощности, вы всегда должны пытаться снизить номинальную мощность от номинальной мощности в кВА, а не от номинальной мощности в кВт. Формула: 2/3 кВА (например, однофазная мощность 150 кВА будет понижена до 100 кВА), а затем преобразовать оттуда в киловатты, если необходимо.

• Для снижения мощности генераторной установки соответствующая часть генератора обычно должна иметь 12 или 10 выводов, которые можно повторно подключить.Нагрузка на сам двигатель не затронута, потому что это сторона генератора, по существу, переходит в режим повышенной передачи. Если генератор не может быть повторно подключен (или может быть подключен только для высокого / низкого напряжения), вы все равно можете применять к нему однофазные нагрузки, если не превышаете номинальный ток на отдельной линии.

• Генератор ограничен своей электрической мощностью в зависимости от стороны генератора и на самом деле не имеет большого отношения к двигателю.

Общие напряжения на коммерческих генераторных установках
Однофазный

• 120
• 240
• 120/240

3 фазы
• 208
• 120/208
• 240
• 480 (наиболее распространенное напряжение для промышленных генераторов)
• 277/480
• 600 (в основном для районов Канады)
• 4160 Вольт

Требования к напряжению могут сильно различаться для разных типов оборудования (например, другие варианты напряжения включают: 220, 440, 2400, 3300, 6900, 11500 и 13500)

Как определить необходимое напряжение

Чтобы убедиться, что конфигурация напряжения именно такая, какая вам нужна, вы всегда должны консультироваться с электриком или подрядчиком по электрике.Они могут оценить вашу среду и определить различные нагрузки, которые потребуются вашему объекту или предприятию, а также смогут принять во внимание другие переменные, такие как напряжение, подаваемое в здание, максимальную силу тока, выходную мощность электродвигателя и многое другое. Вы также можете обратиться к нашему калькулятору мощности, чтобы узнать числа. Используйте эти числа в качестве отправной точки и используйте диаграмму силы тока, которая доступна здесь и на других сайтах различных производителей в Интернете. Обязательно учитывайте следующие ключевые элементы, перечисленные ниже, чтобы помочь вам определить правильное напряжение для вашей генераторной установки:

• Требуемое напряжение, поступающее на ваш объект, или питание от сетевого трансформатора, который подается в здание.

• Максимальная сила тока, необходимая для работы вашего конкретного оборудования. Если вы не знаете эту информацию, токи генератора (для 3-фазных генераторов переменного тока) обычно можно сопоставить с таблицей, чтобы определить размер автоматического выключателя, который потребуется вашему генератору.

• Также следует учитывать пусковой ток промышленных двигателей. Многие двигатели будут работать с определенной мощностью, но потребуют гораздо более высоких пусковых кВт. Например, вам может потребоваться 200 кВт и увеличенная сила тока при запуске, даже если ваша средняя рабочая нагрузка составляет всего 90 кВт.Также хорошо оценить требования к мощности электродвигателя. Некоторые двигатели оснащены устройством плавного пуска, которое помогает контролировать ускорение путем подачи напряжения. Некоторые промышленные двигатели предоставляют всю эту информацию на своих бирках данных.

• Частота электросети также играет роль - в большинстве США и некоторых частях Азии частота составляет 60 Гц, а в остальном мире - 50 Гц. Большинство крупных кораблей и самолетов используют специальную частоту 400 Гц. Для переключения мощности в электросети на другую частоту иногда можно использовать преобразователь частоты, но необходимо учитывать дополнительные факторы.Большинство генераторов можно преобразовать, но некоторые генераторы не будут работать должным образом или могут потребоваться дополнительные детали и настройка. Проконсультируйтесь с производителем генератора для получения дополнительных сведений о подобной ситуации.

Регулировка напряжения генератора

Регулировка напряжения генераторов - это то, что наши опытные техники выполняют каждые несколько дней, чтобы удовлетворить все различные комбинации и особые электрические требования наших клиентов.В то время как напряжение можно регулировать на большинстве генераторов, ваши конкретные параметры всегда будут ограничены в зависимости от того, с какой частью генератора вы работаете.

Сам процесс изменения напряжения - это относительно техническая электрическая процедура, которая в первую очередь включает регулировку выводов на стороне генератора. На большинстве 3-фазных генераторных установок мы обычно берем 10 или 12 выводов со стороны генератора и меняем конфигурацию их расположения и подключения, корректируем их маршрут к панели управления и некоторым другим местам - в зависимости от того, что мы пытаемся выполнить.Мы хорошо изолируем провода, при необходимости отрегулируем чувствительные провода, а затем при необходимости внесем дополнительные изменения. Именно здесь часто упоминаются такие термины, как изгиб и двойной треугольник (или зигзаг), Y-конфигурация и другие различные схемы подключения. Дополнительные сведения об этих условиях см. В нашей статье о фазовых преобразованиях. На 3-фазных генераторах мы можем изменить, например, 208 В на 480 В или с 480 на 240 В, или почти любое количество других комбинаций и фаз, используя все напряжения, которые доступны в настоящее время (при условии, что конец генератора можно повторно подключить).

Сторона генератора - это основной компонент, который будет определять, как генератор будет реагировать на изменение фазы и / или напряжения. При правильном выполнении изменение напряжения не должно повредить или перенапрягать устройство. Многим клиентам требуется наличие двух или более напряжений системы от их резервной генераторной установки. Это могут быть электродвигатели, работающие на 480 Вольт, бытовые приборы и производственное оборудование, использующие 208 Вольт, а также меньшие нагрузки и электроинструменты на 240 Вольт.Вы можете добиться этого с помощью трехфазного генератора либо с помощью переключателя, либо с помощью двойного генератора напряжения, который уже сделан для этой цели. Однако имейте в виду, что вы не можете одновременно выводить несколько напряжений от одного генератора, вам нужно будет вручную переключить выход на каждое другое напряжение или использовать для этого трансформатор.

Существует несколько ограничений, о которых следует помнить при рассмотрении изменения напряжения. Специализированные или высоковольтные генераторы (например, 4160 или 13 500 Вольт) не очень практичны для изменения.Вы можете изменить 600 В на 480 В, но не наоборот. Кроме того, на многих трехфазных генераторах иногда бывает трудно получить доступ к определенным элементам и обойти их. Например, у них может быть гибкий кабелепровод, который обертывается, дверцы панелей, которые находятся в необычных местах, или корпуса, которые не позволяют нашим техническим специалистам легкий доступ. Хотя почти всегда есть доступ к стволу и проводке на концах трехфазного генератора, иногда это может быть сложно. Следует также иметь в виду, что некоторые концы генератора не могут быть повторно подключены, поэтому варианты и схемы проводки, доступные для этих типов генераторов, очень ограничены.

Еще одна распространенная вещь, которую мы делаем при изменении напряжения, - это обновляем компоненты и проверяем другие возможные варианты оборудования в вашей системе, включая следующее:

Замените датчики - всякий раз, когда мы изменяем напряжение на старом генераторе, нам часто приходится заменять несколько датчики, чтобы мы могли прочитать новые уровни вывода. Одним из приятных преимуществ новой цифровой панели управления является то, что ее обычно можно перепрограммировать.

Выключатели - мы регулярно заменяем выключатели на блоках в соответствии с требованиями наших клиентов по силе тока.Прерыватель обычно прикрепляется к стороне генератора, и это важный компонент, который поможет защитить генератор, гарантируя, что вы не превысите номинальную силу тока для этого устройства. В зависимости от того, хочет ли клиент, чтобы все было на одном выключателе или было разделено по какой-либо конкретной причине, мы можем изменить конфигурацию на что-то другое (например, один выключатель на 1200 А или два на 600 А).

Voltage Regulator - на большинстве генераторных установок, когда вы повторно подключаете провода к другому напряжению, вы также должны тщательно регулировать чувствительные провода, идущие к регулятору и / или панели управления.Если это не будет сделано должным образом, вы можете сжечь доску или нанести другой ущерб. Большинство современных коммерческих генераторов теперь имеют регулятор напряжения, встроенный в панель управления, поэтому вы можете регулировать настройки напряжения оттуда, и он помогает выполнять все регулировки. Это в первую очередь хорошее достижение, но делает замену платы намного более дорогостоящей из-за дополнительных функций. К старым генераторам часто присоединяется отдельное оборудование, которое выполняет те же функции. Все эти регуляторы работают для автоматического поддержания постоянного напряжения, чтобы ваше оборудование вырабатывало стабильный выходной сигнал.

Трансформатор - если он есть в вашей системе, возможно, потребуется перенастроить часть проводки для соответствия новому напряжению.

Автоматический переключатель резерва (ATS) - определение силы тока для этого типа переключателя также важно, потому что ATS является ключевой частью обеспечения того, чтобы вы могли автоматически переключить генератор во время отключения электросети, а также отключить питание снова включается.

Подводя итог, можно сказать, что существует множество вариантов, когда речь идет о комбинациях фаз и напряжений, конфигурациях и преобразованиях.Это может быть сложный процесс, поэтому лучше всего обратиться за помощью к профессиональному электрику или опытному технику-генератору. Однако, если у вас есть какие-либо вопросы по вопросам, затронутым в этой статье, вам нужна помощь в определении размера генератора или если вам нужна помощь в определении того, что лучше всего подходит для вашей конкретной среды, просто позвоните по телефону 800-853-2073 или свяжитесь с нами. онлайн.

.

электрических генераторов | Как работают генераторы

Какие части электрического генератора?

Генератор состоит из девяти частей, и все они играют роль в передаче энергии туда, где она больше всего нужна. Детали генератора:

  1. Двигатель. Двигатель подает энергию на генератор. Мощность двигателя определяет, сколько электроэнергии может обеспечить генератор.
  1. Генератор .Здесь происходит преобразование механической энергии в электрическую. Генератор, также называемый «genhead», содержит как движущиеся, так и неподвижные части, которые вместе создают электромагнитное поле и движение электронов, генерирующих электричество.
  1. Топливная система . Топливная система позволяет генератору производить необходимую энергию. Система включает топливный бак, топливный насос, трубопровод, соединяющий бак с двигателем, и возвратный трубопровод.Топливный фильтр удаляет мусор до того, как он попадет в двигатель, а форсунка нагнетает топливо в камеру сгорания.
  1. Регулятор напряжения . Этот компонент помогает контролировать напряжение вырабатываемой электроэнергии. Это также помогает преобразовать электричество из переменного тока в постоянный, если это необходимо.
  1. Системы охлаждения и выхлопа . Генераторы выделяют много тепла. Система охлаждения гарантирует, что машина не перегреется. Выхлопная система направляет и удаляет дымовую форму во время работы.
  1. Система смазки . Внутри генератора много маленьких движущихся частей. Очень важно смазать их соответствующим образом моторным маслом, чтобы обеспечить бесперебойную работу и защитить их от чрезмерного износа. Уровни смазки следует проверять регулярно, каждые 8 ​​часов работы.
  1. Зарядное устройство . Батареи используются для запуска генератора. Зарядное устройство для аккумулятора - это полностью автоматический компонент, который обеспечивает готовность аккумулятора к работе, когда это необходимо, путем подачи на него постоянного низкого напряжения.
  1. Панель управления . Панель управления контролирует каждый аспект работы генератора от скорости запуска и работы до выходов. Современные устройства даже способны определять падение или отключение электроэнергии и могут автоматически запускать или выключать генератор.
  1. Основной узел / рама . Это корпус генератора. Это та часть, которую мы видим; структура, которая держит все это на месте.

Какое топливо нужно для электрогенераторов?

Современные электрические генераторы доступны во многих вариантах заправки.Дизель-генераторы - самые популярные промышленные генераторы на рынке. К бытовым генераторам чаще всего относятся: генераторы природного газа или генераторы пропана, тогда как портативные генераторы меньшего размера обычно работают на бензине, дизельном топливе или пропане. Некоторые генераторы могут работать на двух видах топлива - как на бензине, так и на дизельном топливе.

Топливные баки генератора

Топливная система обеспечивает генератор необходимым сырьем для выработки электроэнергии, инициируя процесс внутреннего сгорания.Без топлива не может происходить горение, и генератор не может преобразовывать механическую энергию в электрическую. Топливо для генератора необходимо хранить на месте, чтобы генератор можно было сразу же запустить в работу при необходимости.

В зависимости от типа генератора и его применения, топливные баки могут быть установлены на раме генератора или могут быть внешними баками, расположенными далеко от самого генератора. Как правило, чем больше генератор и чем дольше он должен работать, тем больше топливный бак.Топливо для генератора хранится в баках различной емкости, в зависимости от предполагаемого использования генератора и требуемой мощности. Танки можно размещать над землей, под землей или под базой. Резервуары вспомогательной базы предназначены для хранения менее 1000 галлонов топлива и расположены над землей, но ниже основания генераторной установки.

Наземные и подземные резервуары для хранения топлива генератора - лучший выбор для нужд большой емкости. Подземные резервуары для хранения дороже в установке, но они, как правило, служат дольше, поскольку защищены от непогоды.У обоих типов резервуаров для хранения топлива есть свои плюсы и минусы, но вы не будете одиноки в принятии решения. Топливные баки генераторов и топливные системы генераторов должны соответствовать нескольким требованиям и допускам, прежде чем их можно будет установить, независимо от того, предназначена ли установка для жилого или коммерческого использования.

Основной кодекс, регулирующий топливные баки генератора в Соединенных Штатах, - это Правила и стандарты Национальной ассоциации противопожарной защиты (NFPA), в частности разделы NFPA 30 и NFPA 37. Таким образом, все запросы на топливный бак генератора должны подаваться в Государственную пожарную службу. Маршалла для утверждения.

Чтобы определить минимальную требуемую емкость топливного бака, вам нужно подумать о том, как вы собираетесь использовать генератор. В случае кратковременных или нечастых отключений электроэнергии может быть приемлемым резервный генератор с меньшим резервуаром для хранения, однако вам нужно будет наполнять резервуар чаще, чем вам нужно заполнять резервуары большего размера. Резервуары большего размера могут потребоваться, если вы планируете снабжать энергией крупный коммерческий объект основным генератором или если вы подвержены длительным и частым отключениям электроэнергии.

Ваш поставщик генератора может помочь вам определить оптимальный размер топливного бака, чтобы у вас было достаточно топлива, когда оно вам понадобится. Еще одна вещь, о которой следует помнить как при покупке генератора, так и при выборе топливного бака для генератора, - это стоимость и доступность топлива в вашем регионе. Перед покупкой генератора рекомендуется поговорить с местными поставщиками топлива, чтобы получить лучшее представление о стоимости и логистике, связанных с получением топлива для генератора.

Выхлопные системы и средства контроля выбросов генератора

Поскольку машины, работающие на ископаемом топливе и работающие непрерывно, даже если это время работы нестабильно, генераторы должны быть оснащены компонентами для их охлаждения и фильтрации выбросов.Системы охлаждения и вентиляции генераторов снижают и отводят тепло различными способами:

  • Вода. Для охлаждения компонентов генератора можно использовать воду. Этот тип системы охлаждения обычно ограничен конкретными ситуациями или очень большими установками мощностью 2250 кВт и выше.
  • Водород. Водород - очень эффективный хладагент, который используется для поглощения тепла, выделяемого работающим генератором. Тепло передается теплообменнику и вторичному охлаждающему контуру, часто расположенным в больших местных градирнях.
  • Радиаторы и вентиляторы. Генераторы меньшего размера охлаждаются за счет комбинации стандартного радиатора и вентилятора.

Пары, выделяемые генераторами, аналогичны выхлопным газам других газовых или дизельных двигателей. В их состав входят токсичные химические вещества, такие как углекислый газ, который необходимо фильтровать и удалять из выбросов. Выхлопная система генератора справляется с этой задачей.

Выхлопные трубы подсоединены к двигателю, где они направляют дым вверх, наружу и от генератора и установки.Труба выходит за пределы здания, в котором находится генератор, и должна заканчиваться далеко от дверей, окон и других зон забора воздуха.

В дополнение к выхлопным системам, некоторые генераторы подлежат федеральному контролю за выбросами. Контролируемые выбросы генератора включают: оксид азота (NOx), углеводороды, оксид углерода (CO) и твердые частицы.

В целом аварийные генераторы и генераторы, которые работают менее 100 часов в год, не подпадают под федеральные требования по выбросам генераторов, однако постоянно установленные основные генераторы и резервные генераторы подчиняются федеральным требованиям по выбросам в соответствии с тремя правилами EPA:

  • Национальный стандарт выбросов опасных загрязнителей воздуха (NESHAP) - для поршневых двигателей внутреннего сгорания (RICE). 40 Свод федеральных правил, часть 63, подраздел ZZZZ. Также известно как правило RICE.
  • New Source Performance Standards (NSPS) - стандарты производительности для стационарных двигателей с искровым зажиганием . 40 CFR, часть 60, подраздел JJJJ. Также известно как правило NSPS с искровым зажиганием.
  • Стандарты характеристик стационарных двигателей внутреннего сгорания с воспламенением от сжатия . 40 CFR, часть 60, подраздел IIII. Также известно как правило сжатия зажигания NSPS.

Хорошая новость заключается в том, что многие новые генераторы уже соответствуют стандартам выбросов генераторов благодаря производственным усовершенствованиям. Старые генераторы могут быть заменены на устаревшие, что делает их освобожденными от федеральных правил и подчиняется только государственным и местным стандартам выбросов. Требования к контролю выбросов различаются в зависимости от производителя, размера генератора и даты производства, поэтому лучший способ определить ваши требования к выбросам - это поговорить с продавцом или производителем генератора.

Для более глубокого изучения нормативов выбросов см. Этот официальный документ Cummins «Влияние нормативов выбросов Уровня 4 на энергетическую отрасль».

Панель управления генератора и автоматический резервирующий выключатель (АВР)

Одним из важнейших компонентов современных генераторов является панель управления генератором. Панель управления - это мозг генератора, а также пользовательский интерфейс генератора; точка доступа и управления работой генератора.

Многие панели управления оснащены автоматическим переключателем резерва (АВР), который постоянно контролирует поступающую мощность. Когда уровень мощности падает или полностью отключается, ATS сигнализирует панели управления о запуске генератора.Аналогичным образом, когда поступающее питание восстанавливается, ATS сигнализирует панели управления о необходимости выключить генератор и повторно подключается к электросети.

В дополнение к круглосуточному мониторингу панель управления генератором предоставляет менеджерам сайта обширную информацию:

  • Датчики двигателя предоставляют важную информацию об уровнях масла и жидкости, напряжении аккумуляторной батареи, частоте вращения двигателя и часах работы. Во многих генераторах панель даже автоматически отключает двигатель, когда обнаруживает проблему с уровнями жидкости или другими аспектами работы генератора.
  • Датчики генератора предоставляют ценную информацию о выходном токе, напряжении и рабочей частоте.

Какое обслуживание требуется для генератора?

Генераторы

представляют собой двигатели и требуют регулярного технического обслуживания двигателя для обеспечения надлежащей работы. Поскольку многие генераторы обеспечивают резервное питание в случае аварийных ситуаций, операторам крайне важно проводить регулярные проверки и проверки своих генераторов, чтобы гарантировать, что машина будет работать по мере необходимости и в случае необходимости.

Лучшая программа технического обслуживания генератора - это та, которую рекомендует производитель, но, как минимум, все планы технического обслуживания генератора должны включать регулярное и текущее:

  • Осмотр и снятие изношенных деталей.
  • Проверка уровней жидкости, включая охлаждающую жидкость и топливо.
  • Осмотр и чистка аккумуляторной батареи.
  • Проведение теста банка нагрузки на генераторе и автоматическом переключателе.
  • Проверка ПКП на точность показаний и индикаторов.
  • Замена воздушного и топливного фильтров.
  • Осмотр системы охлаждения.
  • Смазка деталей по мере необходимости.

Обязательно ведите журнал обслуживания для ведения записей. Включите все показания, уровни жидкости и т. Д., А также дату и показания счетчика моточасов генератора. Эти записи можно сравнить с будущими записями и использовать для помощи в обнаружении отклонений или изменений в работе, которые могут указать вам на скрытые проблемы, которые могут стать серьезными, если их не проверить.

Генераторы

могут прослужить десятилетия при правильном обслуживании. Эти простые, небольшие вложения со временем окупятся за счет экономии на дорогостоящем ремонте или даже полной замене генератора. Если техническое обслуживание генератора не является делом, которым вы можете управлять самостоятельно, многие дилеры генераторов предлагают контракты на техническое обслуживание или могут порекомендовать квалифицированных специалистов по техническому обслуживанию, которые помогут вам поддерживать ваш генератор в отличном состоянии год за годом. Это время и деньги, потраченные не зря, если они могут поддерживать ваш бизнес в рабочем состоянии при отключении электроэнергии.

.

Как генератор вырабатывает электричество? Статья о том, как работают генераторы

Генераторы

- это полезные устройства, которые подают электроэнергию во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание бизнес-операций. Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях. В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.

Как работает генератор?

Электрический генератор - это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.

Важно понимать, что генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию, чтобы заставить движение электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь.Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, рассматривая генератор как аналог водяного насоса, который вызывает поток воды, но на самом деле не «создает» воду, текущую через него.

Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг. Фарадей обнаружил, что описанный выше поток электрических зарядов может быть вызван перемещением электрического проводника, такого как провод, содержащий электрические заряды, в магнитном поле.Это движение создает разность напряжений между двумя концами провода или электрического проводника, что, в свою очередь, заставляет электрические заряды течь, генерируя электрический ток.

Основные компоненты генератора

Основные компоненты электрического генератора можно в общих чертах классифицировать следующим образом:

  • Двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Системы охлаждения и выхлопа
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Основной узел / рама
Описание основных компонентов генератора приводится ниже.
Двигатель

Двигатель является источником подводимой механической энергии к генератору. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может выдать генератор. Есть несколько факторов, которые необходимо учитывать при оценке двигателя вашего генератора. Для получения полных рабочих характеристик двигателя и графиков технического обслуживания необходимо проконсультироваться с производителем двигателя.

(a) Тип используемого топлива - двигатели генераторов работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженном или газообразном виде) или природный газ. Меньшие двигатели обычно работают на бензине, тогда как более крупные двигатели работают на дизельном топливе, жидком пропане, пропане или природном газе. Некоторые двигатели также могут работать на двойной подаче дизельного и газового топлива в двухтопливном режиме.

(b) Двигатели с верхним расположением клапанов (OHV) в сравнении с двигателями без OHV - двигатели с верхним расположением клапанов отличаются от других двигателей тем, что впускные и выпускные клапаны двигателя расположены в головке цилиндра двигателя, а не на двигателе. блок.Двигатели OHV имеют ряд преимуществ перед другими двигателями, такими как:

• Компактная конструкция
• Более простой рабочий механизм
• Прочность
• Удобство в эксплуатации
• Низкий уровень шума при работе
• Низкий уровень выбросов

Однако OHV-двигатели также дороже других двигателей.

(c) Чугунная гильза (CIS) в цилиндре двигателя - CIS - это накладка в цилиндре двигателя.Это снижает износ и обеспечивает долговечность двигателя. Большинство двигателей OHV оснащены системой CIS, но очень важно проверить наличие этой особенности в двигателе генератора. CIS - это не дорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.

Генератор

Генератор переменного тока, также известный как «генератор», представляет собой часть генератора, которая вырабатывает электрическую мощность за счет механического входа, подаваемого двигателем.Он состоит из неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, которое, в свою очередь, генерирует электричество.

(а) Статор - это стационарный компонент. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.

(b) Ротор / Якорь - это движущийся компонент, который создает вращающееся магнитное поле любым из следующих трех способов:

(i) Индукционным способом - они известны как бесщеточные генераторы переменного тока и обычно используются в больших генераторах.
(ii) Постоянными магнитами - это обычное дело в небольших генераторах переменного тока.
(iii) Использование возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через совокупность токопроводящих контактных колец и щеток.

Ротор создает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмотками статора. Это производит переменный ток на выходе генератора.

При оценке генератора генератора необходимо учитывать следующие факторы:

(a) Металл в сравнении с пластиковым корпусом - цельнометаллическая конструкция обеспечивает долговечность генератора.Пластиковые корпуса со временем деформируются, что приводит к обнажению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.

(б) Шариковые подшипники по сравнению с игольчатыми подшипниками - шариковые подшипники предпочтительнее и служат дольше.

(c) Бесщеточная конструкция - генератор переменного тока, в котором не используются щетки, требует меньшего обслуживания, а также производит более чистую мощность.

Топливная система

Топливный бак обычно имеет достаточную емкость, чтобы генератор работал в среднем от 6 до 8 часов.В случае малых блоков генератора, топливный бак является частью занос базы генератора или смонтирован на верхней части корпуса генератора. Для коммерческого использования может потребоваться монтаж и установка внешнего топливного бака. Все подобные установки должны быть одобрены Управлением городского планирования. Щелкните следующую ссылку для получения дополнительных сведений о топливных баках для генераторов.

Общие характеристики топливной системы включают следующее:

(a) Соединение трубопровода от топливного бака к двигателю - линия подачи направляет топливо из бака в двигатель, а обратная линия направляет топливо от двигателя в бак.

(b) Вентиляционная труба топливного бака - Топливный бак имеет вентиляционную трубу для предотвращения повышения давления или разрежения во время заправки и опорожнения бака. При заправке топливного бака убедитесь, что металл-металл соприкасается с заправочной форсункой и топливным баком, чтобы избежать искр.

(c) Переливное соединение от топливного бака к сливной трубе - это необходимо для того, чтобы любой перелив во время заправки бака не вызывал разлив жидкости на генераторную установку.

(d) Топливный насос - перекачивает топливо из основного накопительного бака в дневной.Топливный насос обычно работает от электричества.

(e) Топливный водоотделитель / топливный фильтр - он отделяет воду и посторонние вещества от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.

(f) Топливная форсунка - распыляет жидкое топливо и распыляет необходимое количество топлива в камеру сгорания двигателя.


Регулятор напряжения
Как следует из названия, этот компонент регулирует выходное напряжение генератора.Механизм описан ниже для каждого компонента, который участвует в циклическом процессе регулирования напряжения.

(1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток - регулятор напряжения принимает небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбудителя.

(2) Обмотки возбудителя: преобразование постоянного тока в переменный - теперь обмотки возбудителя работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток.Обмотки возбудителя подключены к блокам, известным как вращающиеся выпрямители.

(3) Вращающиеся выпрямители: преобразование переменного тока в постоянный - они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор / якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора / якоря.

(4) Ротор / якорь: преобразование постоянного тока в переменное напряжение - ротор / якорь теперь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.

Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения производит меньше постоянного тока. Как только генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, ровно столько, чтобы поддерживать выходную мощность генератора на полном рабочем уровне.

Когда вы добавляете нагрузку к генератору, его выходное напряжение немного падает.Это заставляет регулятор напряжения действовать, и начинается вышеуказанный цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не вырастет до своей первоначальной полной рабочей мощности.

Система охлаждения и выпуска
(а) Система охлаждения
Продолжительное использование генератора вызывает нагрев различных его компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, выделяемого в процессе.

Неочищенная / пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше.Водород иногда используется в качестве охлаждающей жидкости для обмоток статора больших генераторных установок, поскольку он более эффективно поглощает тепло, чем другие охлаждающие жидкости. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему очень большие генераторы и малые электростанции часто имеют рядом с собой большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генераторе и работают в качестве основной системы охлаждения.

Необходимо ежедневно проверять уровень охлаждающей жидкости в генераторе. Систему охлаждения и насос неочищенной воды следует промывать через каждые 600 часов, а теплообменник следует очищать через каждые 2400 часов работы генератора. Генератор следует размещать на открытом и вентилируемом месте с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) требует, чтобы со всех сторон от генератора оставалось минимум 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.

(б) Выхлопная система
Выхлопные газы, выделяемые генератором, такие же, как выхлопные газы любого другого дизельного или газового двигателя, и содержат высокотоксичные химические вещества, с которыми необходимо обращаться должным образом. Следовательно, важно установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент нельзя переоценить, поскольку отравление угарным газом остается одной из наиболее частых причин смерти в пострадавших от урагана районах, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.

Выхлопные трубы обычно изготавливаются из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно присоединяются к двигателю с помощью гибких соединителей, чтобы минимизировать вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба заканчивается снаружи и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не подключена к выхлопной системе любого другого оборудования.Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, нужно ли для эксплуатации вашего генератора получить разрешение от местных властей, чтобы убедиться, что вы соблюдаете местное законодательство и защитите себя от штрафов и других санкций.


Смазочная система
Поскольку генератор содержит движущиеся части в своем двигателе, он требует смазки для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе.Уровень смазочного масла следует проверять каждые 8 ​​часов работы генератора. Вам также следует проверять отсутствие утечек смазки и менять смазочное масло каждые 500 часов работы генератора.


Зарядное устройство
ST e art функция генератора работает от батареи. Зарядное устройство поддерживает заряд аккумуляторной батареи генератора, подавая на нее точное «плавающее» напряжение. Если напряжение холостого хода очень низкое, аккумулятор останется недозаряженным.Если напряжение холостого хода очень высокое, это сократит срок службы батареи. Зарядные устройства для аккумуляторов обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо настроек или изменений. Выходное напряжение постоянного тока зарядного устройства устанавливается на уровне 2,33 В на элемент, что является точным значением плавающего напряжения для свинцово-кислотных аккумуляторов. Зарядное устройство аккумулятора имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.


Панель управления
Это пользовательский интерфейс генератора, в котором находятся электрические розетки и элементы управления. В следующей статье представлены дополнительные сведения о панели управления генератором. Различные производители предлагают различные функции на панелях управления своих устройств. Некоторые из них упомянуты ниже.

(a) Электрический запуск и выключение - Панели управления автоматическим запуском автоматически запускают ваш генератор при отключении электроэнергии, контролируют генератор во время работы и автоматически выключают агрегат, когда он больше не нужен.

(b) Манометры двигателя - различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы. Постоянное измерение и мониторинг этих параметров позволяет автоматически отключать генератор, когда любой из них превышает соответствующие пороговые уровни.

(c) Датчики генератора. На панели управления также есть счетчики для измерения выходного тока и напряжения, а также рабочей частоты.

(d) Другие элементы управления - переключатель выбора фазы, переключатель частоты и переключатель управления двигателем (ручной режим, автоматический режим) среди прочего.

Основной узел / рама

Все генераторы, переносные или стационарные, имеют индивидуальные корпуса, которые обеспечивают структурную опору основания. Рама также позволяет заземлить генерируемые элементы в целях безопасности.

.

7 основных источников электричества, о которых вы должны знать

Само представление о мире без электричества кажется невозможным. Это один из величайших даров, которые наука дала человечеству. Почти все в нашем мире сегодня зависит от электроэнергии.

Ожидается, что электрическая зависимость со временем будет только расти. Оценки показывают, что в 2018 году мировой спрос на электроэнергию вырос до 23000 ТВтч, и это число, вероятно, будет увеличиваться с каждым годом.Этот стремительно растущий спрос отвечает за половину роста потребностей в энергии и составляет 20% доли в общем потреблении энергии во всем мире.

СВЯЗАННЫЕ С: 3+ РАЗЛИЧНЫХ ТИПОВ ЭЛЕКТРОСТАНЦИЙ, ГЕНЕРИРУЮЩИХ ЭЛЕКТРОЭНЕРГИЮ ДЛЯ США

Эти статистические данные ясно показывают, что электричество является генератором будущего. Тем не менее, как мы можем генерировать такое ошеломляющее количество электроэнергии для удовлетворения постоянно растущих потребностей? Давайте узнаем!

Определение электричества

Электричество можно определить как форму энергии, которая вырабатывается в результате потока электронов из положительных и отрицательных точек внутри проводника.Мы рассматриваем электричество как вторичный источник энергии.

Это связано с тем, что он не поставляется в виде готового продукта, а должен быть получен из первичных источников, таких как ветер, солнечный свет, уголь, природный газ, реакции ядерного деления и гидроэнергетика.

Вот несколько основных способов, с помощью которых мы можем производить электричество, и как это можно сделать!

1. Электричество через трение

Первые наблюдения электрических явлений были сделаны в Древней Греции.Это произошло, когда философ Фалес Милетский (640–546 гг. До н.э.) обнаружил, что когда янтарные слитки натирают о загорелую кожу, они приобретают привлекательные характеристики, которыми они раньше не обладали.

Это тот же эксперимент, который теперь можно провести, протерев пластиковый стержень тканью. Поднося его ближе к маленьким кусочкам бумаги, он притягивает их, как это характерно для наэлектризованных тел.

Все мы знакомы с эффектами статического электричества. Некоторые люди более подвержены влиянию статического электричества, чем другие.Некоторые пользователи автомобилей ощущают его воздействие при нажатии на ключ или прикосновении к пластине автомобиля.

Мы создаем статическое электричество, когда протираем ручку одеждой. То же самое происходит, когда мы натираем стекло о шелк или янтарь с шерсти.

Следовательно, понятия заряда и подвижности необходимы при изучении электричества, и без них электрический ток не мог бы существовать.

2. Электричество за счет химического воздействия

Все батареи состоят из электролита (который может быть жидким, твердым или полутвердым), положительного электрода и отрицательного электрода.Электролит - это ионный проводник.

Один из электродов производит электроны, а другой электрод их принимает. Когда электроды подключены к питаемой цепи, они производят электрический ток.

Батареи, в которых химическое вещество не может вернуться в свою первоначальную форму после преобразования химической энергии в электрическую, называются первичными или гальваническими батареями.

Батареи или аккумуляторы двусторонние.В этих типах батарей химическое вещество, которое реагирует в электродах с образованием электрической энергии, может быть восстановлено путем пропускания через него электрического тока в направлении, противоположном нормальному режиму работы батареи.

3. Электричество под действием света

Когда солнечный свет становится более интенсивным, напряжение, генерируемое между двумя слоями фотоэлектрического элемента, увеличивается. Но как работает фотоэлемент?

При отсутствии света система не вырабатывает энергию.Когда солнечный свет попадает на пластину, клетка начинает функционировать. Фотоны солнечного света взаимодействуют с доступными электронами и увеличивают их энергетические уровни.

Таким образом, электричество вырабатывается за счет солнечной энергии.

4. Тепловая электроэнергия за счет теплового воздействия

Тепловая генерирующая установка - это тип установки, в которой турбина, приводимая в действие паром под давлением, используется для перемещения оси электрогенераторов. Обычные тепловые электростанции и атомные тепловые электростанции используют энергию, содержащуюся в сжатом паре.

Самый простой пример - подключить чайник, полный кипятка, к лопаточному колесу, которое, в свою очередь, соединено с генератором. Струя пара из котла приводит в движение ротор.

Следовательно, мы можем получать пар разными способами, например, сжигая уголь, нефть, газ, городские отходы или используя большое количество тепла, выделяемого реакциями ядерного деления. Вы даже можете производить пар, концентрируя энергию солнца.

Не будет ошибкой сказать, что тепловая энергия - один из самых распространенных способов производства электроэнергии.

5. Электричество за счет магнетизма

В 1819 году датский физик Ганс Кристиан Эрстед сделал необычайное открытие, обнаружив, что можно отклонить магнитную стрелку с помощью электрического тока. Это открытие, которое показало связь между электричеством и магнетизмом, было разработано французским ученым Андре Мари Ампером.

Ампер изучил силы между проводами, по которым циркулируют электрические токи. В том же духе французский физик Доминик Франсуа Араго, как известно, намагнитил железо, поместив его рядом с кабелем, по которому проходит ток.

После этого, в 1831 году, британский ученый Майкл Фарадей обнаружил, что движение магнита вблизи кабеля индуцирует в нем электрический ток. Этот эффект был противоположен обнаруженному Эрстедом.

Таким образом, Эрстед продемонстрировал, что электрический ток может создавать магнитное поле. С другой стороны, Фарадей продемонстрировал, что мы можем использовать магнитное поле для создания электрического тока. Оба открытия являются новаторскими.

В этом контексте полное смешение теорий магнетизма и электричества произошло благодаря британскому физику Джеймсу Клерку Максвеллу.Максвелл предсказал существование электромагнитных волн и определил свет как электромагнитное явление.

Очевидно, что потребовалось много ученых и исследователей, чтобы сделать вывод, что электричество также может быть произведено с помощью магнетизма.

6. Электроэнергия, вырабатываемая под давлением

Давление, оказываемое подземными водными потоками, - это процесс, используемый на больших судах в качестве альтернативной энергии основной системы. В плотинах электричество вырабатывается путем выпуска контролируемого потока воды под высоким давлением через принудительный трубопровод.

Вода приводит в движение турбины, которые приводят в движение генераторы и, таким образом, вырабатывают электрический ток. Затем этот высокий ток низкого напряжения проходит через усилитель напряжения, который преобразует его в электричество.

7. Гидравлическое электричество за счет действия воды

Из всех перечисленных выше способов получения энергии магнитная энергия чаще всего используется для производства электроэнергии в больших количествах. Его производство основано на том, что при перемещении проводника в присутствии магнита в проводнике происходит упорядоченное движение электронов.

Это происходит в результате сил притяжения и отталкивания, вызванных магнитным полем. Работа генераторов переменного тока, двигателей и динамо-машин основана на этой форме производства электроэнергии.

Примечательно, что гидроэлектроэнергия вырабатывает около 9% электроэнергии в США. Более того, он является возобновляемым и может производиться с очень небольшим количеством выбросов.

СВЯЗАННЫЕ С: 21 ТОП-ПЛОТИНЫ В МИРЕ, ПОЛУЧАЮЩИЕ БОЛЬШОЕ КОЛИЧЕСТВО ЭЛЕКТРОЭНЕРГИИ

Производство электроэнергии имеет богатую историю и еще более светлое будущее.Согласно прогнозам Института энергетических исследований, ископаемое топливо продолжит сохранять свой статус ведущего источника производства электроэнергии в США до 2040 года.

.

Зависимость переменного тока (AC) от постоянного (DC)

Поразительно!

Откуда австралийская рок-группа AC / DC получила свое название? Почему, переменный ток и постоянный ток, конечно же! И переменный, и постоянный ток описывают типы протекания тока в цепи. В постоянного тока (DC) электрический заряд (ток) течет только в одном направлении. Электрический заряд в переменного тока (AC), напротив, периодически меняет направление.Напряжение в цепях переменного тока также периодически меняется на противоположное, потому что ток меняет направление.

Большая часть создаваемой вами цифровой электроники будет использовать постоянный ток. Однако важно понимать некоторые концепции переменного тока. Большинство домов подключено к сети переменного тока, поэтому, если вы планируете подключить проект музыкальной шкатулки Tardis к розетке, вам нужно будет преобразовать переменный ток в постоянный. Переменный ток также имеет некоторые полезные свойства, такие как способность преобразовывать уровни напряжения с помощью одного компонента (трансформатора), поэтому переменный ток был выбран в качестве основного средства для передачи электроэнергии на большие расстояния.

Что вы узнаете

  • История создания переменного и постоянного тока
  • Различные способы генерации переменного и постоянного тока
  • Некоторые примеры приложений переменного и постоянного тока

Рекомендуемая литература

и nbsp

и nbsp

Переменный ток (AC)

Переменный ток описывает поток заряда, который периодически меняет направление. В результате уровень напряжения также меняется на противоположный вместе с током.AC используется для подачи питания в дома, офисные здания и т. Д.

Генератор переменного тока

переменного тока может производиться с использованием устройства, называемого генератором переменного тока. Это устройство представляет собой особый тип электрического генератора, предназначенный для выработки переменного тока.

Проволочная петля скручена внутри магнитного поля, которое индуцирует ток по проводу. Вращение провода может происходить с помощью любого количества средств: ветряной турбины, паровой турбины, проточной воды и так далее. Поскольку провод вращается и периодически меняет магнитную полярность, напряжение и ток на проводе чередуются.Вот короткая анимация, демонстрирующая этот принцип:


(Видео предоставлено: Хуррам Танвир)

Генератор переменного тока можно сравнить с нашей предыдущей аналогией с водой:

Чтобы генерировать переменный ток в наборе водопроводных труб, мы соединяем механический кривошип с поршнем, который перемещает воду по трубам вперед и назад (наш «переменный» ток). Обратите внимание, что зажатый участок трубы по-прежнему оказывает сопротивление потоку воды независимо от направления потока.

Осциллограммы

AC может быть разных форм, если напряжение и ток чередуются. Если мы подключим осциллограф к цепи переменного тока и построим график ее напряжения с течением времени, мы можем увидеть несколько различных форм сигналов. Наиболее распространенный тип переменного тока - синусоидальный. Переменный ток в большинстве домов и офисов имеет колебательное напряжение, которое создает синусоидальную волну.

Другие распространенные формы переменного тока включают прямоугольную волну и треугольную волну:

Прямоугольные волны часто используются в цифровой и переключающей электронике для проверки их работы.

Треугольные волны используются при синтезе звука и используются для тестирования линейной электроники, такой как усилители.

Описание синусоидальной волны

Мы часто хотим описать форму волны переменного тока в математических терминах. В этом примере мы будем использовать обычную синусоиду. Синусоидальная волна состоит из трех частей: амплитуда, частота и фаза .

Рассматривая только напряжение, мы можем описать синусоидальную волну как математическую функцию:

V (t) - это наше напряжение как функция времени, что означает, что наше напряжение изменяется с изменением времени.Уравнение справа от знака равенства описывает, как напряжение изменяется во времени.

V P - амплитуда . Это описывает максимальное напряжение, которое наша синусоида может достигать в любом направлении, а это означает, что наше напряжение может быть + V P вольт, -V P вольт или где-то посередине.

Функция sin () указывает, что наше напряжение будет в форме периодической синусоидальной волны, которая представляет собой плавные колебания около 0 В.

- это константа, которая преобразует частоту из циклов (в герцах) в угловую частоту (радианы в секунду).

f описывает частоту синусоидальной волны. Это дается в виде герц или единиц в секунду . Частота показывает, сколько раз определенная форма волны (в данном случае один цикл нашей синусоидальной волны - подъем и спад) происходит в течение одной секунды.

t - наша независимая переменная: время (измеряется в секундах).Со временем меняется и форма нашего сигнала.

φ описывает фазу синусоидальной волны. Фаза - это мера того, насколько сдвинута форма сигнала во времени. Часто это число от 0 до 360 и измеряется в градусах. Из-за периодической природы синусоидальной волны, если форма волны сдвинута на 360 °, она снова становится такой же, как если бы она была сдвинута на 0 °. Для простоты мы предполагаем, что в остальной части этого руководства фаза равна 0 °.

Мы можем обратиться к нашей надежной розетке за хорошим примером того, как работает форма сигнала переменного тока. В Соединенных Штатах в наши дома подается питание переменного тока с размахом 170 В (амплитуда) и 60 Гц (частота). Мы можем вставить эти числа в нашу формулу, чтобы получить уравнение (помните, что мы предполагаем, что наша фаза равна 0):

Мы можем использовать наш удобный графический калькулятор, чтобы построить график этого уравнения. Если графического калькулятора нет, мы можем использовать бесплатную онлайн-программу для построения графиков, такую ​​как Desmos (обратите внимание, что вам, возможно, придется использовать «y» вместо «v» в уравнении, чтобы увидеть график).

Обратите внимание, что, как мы и предсказывали, напряжение периодически повышается до 170 В и понижается до -170 В. Кроме того, каждую секунду происходит 60 циклов синусоидальной волны. Если бы мы измеряли напряжение в розетках с помощью осциллографа, мы бы увидели именно это ( ПРЕДУПРЕЖДЕНИЕ: не пытайтесь измерить напряжение в розетке с помощью осциллографа! Это может привести к повреждению оборудования).

ПРИМЕЧАНИЕ: Возможно, вы слышали, что напряжение переменного тока в США составляет 120 В.Это тоже правильно. Как? Говоря об переменном токе (поскольку напряжение постоянно меняется), часто проще использовать среднее или среднее значение. Для этого мы используем метод под названием «Среднеквадратичный корень». (RMS). Когда вы хотите рассчитать электрическую мощность, часто бывает полезно использовать значение RMS для переменного тока. Несмотря на то, что в нашем примере у нас было напряжение, изменяющееся от -170 В до 170 В, среднеквадратичное значение составляет 120 В RMS.

Приложения

В розетках дома и в офисе почти всегда есть кондиционер. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно просто.При высоком напряжении (более 110 кВ) при передаче электроэнергии теряется меньше энергии. Более высокое напряжение означает более низкие токи, а более низкие токи означают меньшее тепловыделение в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов.

AC также может питать электродвигатели. Двигатели и генераторы представляют собой одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую (если вал двигателя вращается, на выводах генерируется напряжение!).Это полезно для многих крупных бытовых приборов, таких как посудомоечные машины, холодильники и т. Д., Которые работают от переменного тока.

Постоянный ток (DC)

Постоянный ток немного легче понять, чем переменный. Вместо того, чтобы колебаться вперед и назад, постоянный ток обеспечивает постоянное напряжение или ток.

Генерация постоянного тока

DC может быть сгенерирован несколькими способами:

  • Генератор переменного тока, оснащенный устройством, называемым «коммутатор», может производить постоянный ток
  • Использование устройства, называемого «выпрямитель», которое преобразует переменный ток в постоянный ток
  • Батареи обеспечивают постоянный ток, который образуется в результате химической реакции внутри батареи

Используя нашу аналогию с водой снова, DC подобен резервуару с водой со шлангом на конце.

Бак может выталкивать воду только в одном направлении: из шланга. Как и в случае с нашей батареей постоянного тока, когда резервуар пуст, вода больше не течет по трубам.

Описание DC

DC определяется как «однонаправленный» ток; ток течет только в одном направлении. Напряжение и ток могут изменяться с течением времени до тех пор, пока направление потока не меняется. Для упрощения предположим, что напряжение является постоянным. Например, мы предполагаем, что батарея AA обеспечивает 1.5 В, что математически можно описать как:

Если мы построим график с течением времени, мы увидим постоянное напряжение:

Что это значит? Это означает, что мы можем рассчитывать на то, что большинство источников постоянного тока обеспечат постоянное напряжение во времени. На самом деле батарея будет медленно терять заряд, а это означает, что напряжение будет падать по мере использования батареи. В большинстве случаев мы можем предположить, что напряжение постоянно.

Приложения

Почти все проекты электроники и запчасти, выставленные на продажу на SparkFun, работают на DC.Все, что работает от батареи, подключается к стене с помощью адаптера переменного тока или использует USB-кабель для питания, зависит от постоянного тока. Примеры электроники постоянного тока включают:

  • Сотовые телефоны
  • D&D Dice Gauntlet на основе LilyPad
  • Телевизоры с плоским экраном (переменный ток переходит в телевизор, который конвертируется в постоянный ток)
  • Фонари
  • Гибридные и электромобили

Битва течений

Почти каждый дом или офис подключен к сети переменного тока.Однако это решение не было мгновенным. В конце 1880-х годов различные изобретения в Соединенных Штатах и ​​Европе привели к полномасштабной битве между распределением переменного и постоянного тока.

В 1886 году электрическая компания Ganz Works, расположенная в Будапеште, электрифицировала весь Рим с помощью переменного тока. Томас Эдисон, с другой стороны, построил 121 электростанцию ​​постоянного тока в Соединенных Штатах к 1887 году. Поворотный момент в битве наступил, когда Джордж Вестингауз, известный промышленник из Питтсбурга, приобрел патенты Николы Теслы на двигатели переменного тока и трансмиссии в следующем году. .

AC против

постоянного тока Томас Эдисон (Изображение любезно предоставлено biography.com)

В конце 1800-х годов постоянный ток было нелегко преобразовать в высокое напряжение. В результате Эдисон предложил систему небольших местных электростанций, которые питали бы отдельные кварталы или участки города. Электроэнергия распределялась по трем проводам от электростанции: +110 вольт, 0 вольт и -110 вольт. Освещение и двигатели можно подключить между розеткой + 110 В или 110 В и 0 В (нейтраль).110 В допускает некоторое падение напряжения между установкой и нагрузкой (дом, офис и т. Д.).

Несмотря на то, что падение напряжения на линиях электропередач было учтено, электростанции необходимо было располагать в пределах 1 мили от конечного пользователя. Это ограничение сделало распределение электроэнергии в сельской местности чрезвычайно трудным, если не невозможным.

Используя патенты Tesla, компания Westinghouse работала над усовершенствованием системы распределения переменного тока. Трансформаторы предоставили недорогой метод повышения напряжения переменного тока до нескольких тысяч вольт и его снижения до приемлемого уровня.При более высоких напряжениях та же мощность могла передаваться при гораздо меньшем токе, что означало меньшие потери мощности из-за сопротивления проводов. В результате крупные электростанции могут быть расположены за много миль и обслуживать большее количество людей и зданий.

Кампания Эдисона по выявлению мазков

В течение следующих нескольких лет Эдисон провел кампанию по категорическому противодействию использованию AC в Соединенных Штатах, которая включала лоббирование законодательных собраний штатов и распространение дезинформации о AC. Эдисон также приказал нескольким техникам публично казнить животных переменным током, пытаясь показать, что переменный ток опаснее постоянного тока.Пытаясь показать эти опасности, Гарольд П. Браун и Артур Кеннелли, сотрудники Edison, разработали первый электрический стул для штата Нью-Йорк, использующий переменный ток.

Возвышение AC

В 1891 году Международная электротехническая выставка проводилась во Франкфурте, Германия, и на ней была показана первая передача трехфазного переменного тока на большие расстояния, которая питала фары и двигатели на выставке. Присутствовали несколько представителей того, что впоследствии станет General Electric, и впоследствии они были впечатлены выставкой.В следующем году была создана компания General Electric, которая начала инвестировать в технологии переменного тока.

Электростанция Эдварда Дина Адамса на Ниагарском водопаде, 1896 г. (Изображение предоставлено teslasociety.com)

Westinghouse выиграл контракт в 1893 году на строительство плотины гидроэлектростанции, чтобы использовать энергию Ниагарского водопада и передавать переменный ток в Буффало, штат Нью-Йорк. Проект был завершен 16 ноября 1896 года, и в Буффало начали использовать переменный ток. Эта веха ознаменовала упадок DC в США.В то время как Европа примет стандарт переменного тока 220–240 В при 50 Гц, стандартом в Северной Америке станет 120 В при 60 Гц.

Высоковольтный постоянный ток (HVDC)

Швейцарский инженер Рене Тюри в 1880-х годах использовал серию двигателей-генераторов для создания высоковольтной системы постоянного тока, которую можно было использовать для передачи постоянного тока на большие расстояния. Однако из-за высокой стоимости и высокой стоимости обслуживания систем Thury HVDC никогда не применялся в течение почти столетия.

С изобретением полупроводниковой электроники в 1970-х годах стало возможным экономичное преобразование между переменным и постоянным током.Для генерации постоянного тока высокого напряжения (иногда до 800 кВ) можно использовать специальное оборудование. Некоторые страны Европы начали использовать линии HVDC для электрического соединения различных стран.

В линиях

HVDC потери меньше, чем в аналогичных линиях переменного тока на очень больших расстояниях. Кроме того, HVDC позволяет подключать различные системы переменного тока (например, 50 Гц и 60 Гц). Несмотря на свои преимущества, системы HVDC более дороги и менее надежны, чем обычные системы переменного тока.

В конце концов, Эдисон, Тесла и Вестингауз могут осуществить свои желания.Переменный ток и постоянный ток могут сосуществовать, и каждый служит определенной цели.

Ресурсы и движение вперед

Теперь вы должны хорошо понимать разницу между переменным и постоянным током. Переменный ток легче преобразовывать между уровнями напряжения, что делает передачу высокого напряжения более возможной. С другой стороны, постоянный ток присутствует почти во всей электронике. Вы должны знать, что они не очень хорошо сочетаются, и вам нужно будет преобразовать переменный ток в постоянный, если вы хотите подключить большую часть электроники к розетке.С этим пониманием вы должны быть готовы заняться некоторыми более сложными схемами и концепциями, даже если они содержат переменный ток.

Взгляните на следующие руководства, когда будете готовы глубже погрузиться в мир электроники:

и nbsp

.

Как производится электрическая энергия.

Есть несколько методов производства электроэнергии для практических целей. Батарею карманного фонарика можно сравнить с источником огромной энергии, представленным более крупной электростанцией. Оба являются примерами применения электрической энергии для определенной цели, и в целом цель определяет природу метода, используемого для производства энергии. Практические методы производства электроэнергии можно перечислить следующим образом:

1.Химические, представленные различными типами батарей или первичных элементов, в которых электричество вырабатывается чисто химическим путем.

2. Электромагнитный, лежащий в основе работы вращающихся генераторов, в которых электричество производится проводниками, движущимися через магнитное поле. Этот метод используется на практике для генераторов различных размеров.

3. Термоэлектрический, в котором нагрев спая между двумя разными металлами дает очень небольшое напряжение, которое может использоваться для измерения температуры и в качестве источника энергии.

4. Пьезоэлектрический, в котором очень небольшое напряжение создается на определенных гранях кристалла за счет приложения механического давления. Этот эффект используется, например, как средство управления частотой в радиогенераторах или для звукоснимателей граммофона, но он подходит для источника питания.

5. Электронный, характеризующийся потоком электронов через откачанные или газовые светодиодные трубки и имеющий следующие формы:

а) Термоэлектронная эмиссия. В котором электроны образуются при нагревании специальных материалов.

б) Фотоэлектрическая эмиссия, при которой электроны высвобождаются на поверхности определенных веществ под действием света.

c) Вторичная эмиссия, при которой электроны вытесняются материалом в результате воздействия электронов или других частиц на его поверхность.

г) Автоэлектронная эмиссия, при которой электроны вытягиваются с поверхности металла путем приложения очень мощных электрических полей.

Электрохимия, батареи и другие источники e.м.ф.

Чистые жидкости - хорошие изоляторы, но жидкости, содержащие соли, проводят электричество.

Ион - это атом, который либо потерял электрон (положительный ион), либо приобрел электрон (отрицательный ион).

Электролиз - это процесс разложения электролита при прохождении через него электрического тока; это приводит к химическому воздействию на электроды, то есть анод и катод.Электролиз лежит в основе не только многих форм химической экстракции и рафинирования, но и гальванической промышленности. Законы Фарадея описывают законы, регулирующие электролиз. Электрический элемент состоит из двух наборов пластин, погруженных в электролит. Клетка может быть сухой или влажной. Первичная ячейка не может быть заряжена, но вторичная ячейка может быть перезаряжена. Батарея - это взаимосвязанная группа ячеек. Все ячейки имеют внутреннее сопротивление, значение которого снижается за счет использования деполяризатора.

Электроэнергия может быть произведена с помощью ряда различных методов, включая химическое воздействие, термоэлектричество, эффект Холла, пьезоэлектрический эффект и фотоэлектрический эффект.

Резисторы и электрические схемы

Резистор может быть фиксированным или переменным. Переменные резисторы могут иметь скользящий контакт или могут быть нанесены на различные краски по их длине; они могут быть подключены как потенциометры для обеспечения переменного выходного напряжения.Сопротивление резистора зависит от нескольких факторов, включая резистивную длину, площадь поперечного сечения и температуру материала. Проводимость проводника обратно пропорциональна сопротивлению. В случае проводника повышение температуры вызывает увеличение сопротивления и наоборот. В изоляторе и полупроводнике повышение температуры вызывает уменьшение сопротивления. Когда резисторы соединены последовательно, сопротивление цепи больше, чем наивысшее отдельное значение сопротивления в цепи, а сопротивление цепи меньше наименьшего отдельного значения сопротивления цепи.

Электромагнетизм

Магнитное поле в ферромагнитном материале создается магнитными доменами. Считается, что линии магнитного потока покидают N-полюс и входят в S-полюс. Подобные магнитные полюса отталкиваются друг от друга, а разные магнитные полюса притягиваются друг к другу.

Магнитодвижущая сила (м.м.д.), создаваемая электромагнитом, создает магнитный поток в магнитной цепи.Эффективное сопротивление магнитной цепи магнитному потоку известно как ее реактивное сопротивление (S). Отношение между магнитным потоком (F), сопротивлением и м.м.д. (F) (закон Ома для магнитной цепи) = F8. Оборудование можно защитить от сильного магнитного поля, окружив его материалом с низким сопротивлением. Э.д.с. может индуцироваться в цепи либо самоиндукцией, либо индукцией, движением в магнитном поле или взаимной индукцией. Величина и направление наведенного ЭМ.f. можно предсказать с помощью законов Фарадея и Ленса.

Электрогенераторы и распределение энергии.

Действие двигателей вызывается силой, действующей на проводник с током в магнитном поле. Направление силы можно предсказать с помощью правила левой руки Флемингса.

А постоянного тока Двигатель состоит из вращающейся части (якоря) и неподвижной части (рамы). Электрическое соединение с якорем осуществляется через угольные щетки и коммутатор.При вращении якоря обратная э.д.с. индуцируется в проводниках якоря (это вызвано действием генератора), противодействуя приложенному напряжению.

Четыре основных типа двигателей постоянного тока - это машины с раздельным возбуждением, с шунтирующей обмоткой, с последовательной обмоткой и с составной обмоткой.

Трансформатор

Трансформатор работает по принципу взаимной индукции. Первичная обмотка трансформатора подключена к источнику питания (который должен быть переменным током), а нагрузка подключена ко вторичной обмотке.

Трансформатор может иметь либо одну обмотку (когда он известен как автотрансформатор), либо более одной обмотки (два обмоточных трансформатора являются наиболее распространенными однофазными трансформаторами). Металлическая цепь трансформатора имеет многослойное покрытие для уменьшения потерь мощности на вихревые токи. Важные правила, касающиеся конструкции трансформатора:

1. Каждая обмотка поддерживает одинаковое количество вольт на виток.

2. Между обмотками поддерживается баланс ампер-витков.КПД трансформатора - это отношение мощности, которую он передает нагрузке, к мощности, потребляемой первичной обмоткой.

8. Измерительные приборы. Амперметры и вольтметры.

Амперметры измеряют ток, протекающий в цепи, и обычно имеют шкалу, градуированную или откалиброванную в амперах, миллиампер или микроампер.

Вольтметры используются для измерения разности потенциалов между двумя точками в цепи. Калибровка вольтметров обычно производится в вольтах, милливольтах и ​​микровольтах.

Основное различие между двумя приборами одного типа или конструкции заключается в сопротивлении рабочей катушки, идентичные подвижные элементы могут использоваться для любого измерителя. Амперметр подключается к положительному или отрицательному проводу последовательно с цепью и, следовательно, должен иметь катушку с низким сопротивлением, иначе показания будут неправильными, поскольку катушка будет поглощать заметное количество энергии.

Вольтметр подключается параллельно к точкам цепи, в которых должна быть измерена разность потенциалов.В этом случае сопротивление рабочей катушки должно быть как можно большим, чтобы ограничить количество потребляемого ею тока, в противном случае произойдет падение потенциала из-за счетчика, и указатель стрелки не будет отображать истинный потенциал. разница в цепи.

Ваттметров. - Измерение мощности в цепи постоянного тока в любой момент может быть достигнуто с помощью амперметра и вольтметра, поскольку мощность в ваттах является произведением тока и напряжения.Однако в цепях переменного тока мгновенные значения всегда меняются. Поэтому для правильного измерения мощности переменного тока необходимо использовать третий прибор для измерения разности фаз. Однако обычной практикой является объединение этих трех инструментов в один, который дает прямое показание мощности в ваттах.

9. Уход за электрооборудованием.

Электрооборудование, как правило, работает надежно. Но это не значит, что он не заслуживает внимания.Необходимо часто проверять оборудование, содержать его в чистоте, смазке и ремонте. Немедленно устранять чрезмерный нагрев, вибрацию, искрение.

Нагрев может быть из-за перегрузки или короткого замыкания между витками, отсутствия масла в подшипниках, вибрации может быть из-за неправильного фундамента, дисбаланса движущихся частей машины.

Проводники могут нагреваться из-за перегрузки или повреждения изоляции проводника.

Электрическая машина любого типа требует определенных условий, при которых она может работать надежно: температура и свободный доступ окружающего воздуха, необходимость защиты от грязи, пыли, тип и продолжительность нагрузки и т. Д. Вращающиеся машины должны быть размещены на прочном основании. . Проводники следует защищать от механических повреждений. Необходимо принять все меры или меры предосторожности.

УРОК 8.

ТЕХНИЧЕСКИЕ КНИГИ И ОТЧЕТЫ

1 Не используйте неисправное электрическое оборудование.

2 Немедленно сообщите о неисправности электрооборудования.

3 Никогда не прикасайтесь к электрическому оборудованию мокрыми руками.

4 Сообщите обо всех изношенных кабелях.

5 Не выполняйте неисправные электрические соединения.

6 Воспользуйтесь консультацией или обратитесь к авторизованным электрикам.

7 Проверьте, что тележка скрывается на всех электроинструментах.

Очков опасности поражения электрическим током:

1. Мокрые руки;

2.Изношенные кабели;

3. Незаземленные пробки;

4. Самодельные подключения.

Шаг 1 Верны эти утверждения или нет? Исправьте ложные:

1. Неисправное электрооборудование безопасно.

2. Изношенные кабели хорошо изолированы.

3. Электроинструменты должны быть земляными.

4. Влажные руки легко проводят электричество.

5. Электрик должен проверить неисправные электрические устройства.

Шаг 2.

Теперь превратите предупреждения в инструкции. Использовать необходимо. Посмотрите на пример.

Не используйте неисправное электрооборудование.

Неисправное электрическое оборудование использовать нельзя.

Тогда сделайте правдивые заявления. Вы можете использовать эти фразы:

Неисправное электрооборудование, вызванный авторизованным электриком, незамедлительно отключены розетки, электрическое оборудование заменено, тормоза неисправны, использовались, неисправные электрические соединения, затянуты, изношены кабели, заряжены, повреждены инструменты, прикасались мокрыми руками.

Разряженная батарея не подлежит регулярной проверке.

Ослабленная гайка никогда не измеряла точно.

Отремонтирован сломанный предохранитель.

Неисправная машина отрегулирована.

Сделана сломанная лампочка. Напряжение в правильной одежде.

Неисправный переключатель, изношены шины.

Задайте и ответьте на вопросы по таблице выше.

Посмотрите на примеры: зачем заменили кабели? Потому что они ошиблись.

Шаг 3

ЗАЩИТНЫЕ УСТРОЙСТВА

Кабели, по которым электрический ток идет к различным приборам на заводе, называются проводниками. Их сопротивление потоку электрического тока вызывает выделение тепла. Если поток электричества в цепи внезапно увеличивается, нагрев проводящих проводов увеличивается и может вызвать возгорание изоляции, что приведет к повреждению оборудования и, возможно, к возгоранию.Поэтому все электрические цепи должны быть защищены с помощью ручных выключателей, предохранителей или автоматических выключателей, которые отключают питание в случае неисправности.

Ручные выключатели

Ручные аварийные выключатели могут быть вставлены в цепь и используются для отключения оборудования от источника питания в случае неисправности.

Предохранители

Каждая цепь должна иметь предохранитель на линии питания оборудования. Предохранитель может быть картриджного типа, который удерживается на месте двумя пружинными зажимами, или может представлять собой кусок провода, соединяющий две точки в цепи.Предохранители имеют номинал в амперах, и номинал должен быть правильным, чтобы в случае перегрузки предохранитель расплавился и разорвал цепь до того, как произойдет какое-либо повреждение электропроводки цепи или оборудования. Если предохранитель перегорел, перед заменой предохранителя необходимо выключить соответствующий ручной выключатель и устранить неисправность. При замене предохранителя необходимо использовать правильный номинал. Установка нового предохранителя с более высоким номиналом опасна и может быть дорогостоящей.

Автоматические выключатели

Автоматические выключатели часто устанавливаются на электрические устройства для защиты от перегрузок.Обычно это концевые выключатели, которые размыкают цепь, когда перегрузка приводит к изгибу биметаллической полосы в выключателе. Эти переключатели имеют кнопку сброса, которая сбрасывает аварийный выключатель и замыкает цепь. Если цепь разорвана из-за увеличения тока, переключатель не может быть немедленно повторно установлен. Биметаллической полосе необходимо время, чтобы остыть (около 30 секунд), прежде чем переключатель можно будет повторно установить.

Разъемы соединительные

Лампа подключена при разомкнутом выключателе.Патрон лампы может оказаться под напряжением только при повреждении изоляции, которая не изолирована переключателем.

При подключении штекеров для ручных инструментов с электрическим приводом нельзя превышать минимальный номинал штекера.

Шаг 4

Верны эти утверждения или нет? Исправить неправильные.

1. Электрические цепи должны быть защищены от токовых перегрузок.

2. Увеличение тока вызывает выделение тепла в проводниках.

3. Горение изоляции может быть вызвано предохранителями.

4. Неисправные цепи должны быть изолированы от источника питания.

5. Предохранители можно заменять сразу после плавления. При необходимости используйте более высокую оценку.

6. Биметаллическая полоса состоит из одного куска металла.

7. Биметаллическая полоса должна остыть, прежде чем контур снова замкнется.

8.Перед заменой предохранителя нельзя выключать текущий ручной переключатель.

Шаг 5.

Ставьте правильные слова. Выберите из этого списка.

Поставка исправленных повреждений

штуки должны клипсы с рейтингом

сусла разрывы

ударов ручное происходит там

удерживаемый картридж

В каждой цепи ... есть предохранитель... к оборудованию. Предохранитель может быть ... типа, который ... в положении на две пружины ... или он может быть ... из ... двух точек в цепи. Предохранители ... в амперах и номинал ... быть правильным, так что если ... перегрузка ... ток, предохранитель ... и ... цепь перед любыми ... к проводке цепи .... Если предохранитель ... правильный ... выключатель (выключить и неисправность ... перед заменой предохранителя.

Шаг 6 .

Объясните разницу между автоматическими выключателями, ручными выключателями и предохранителями и почему все электрические цепи должны быть защищены от токовых перегрузок.

Осмотрите электрическую систему и приборы в вашем университете, нарисуйте схемы электрических цепей и электроснабжения. Опишите все защитные устройства, которые вы найдете.

УРОК 9.

БЕЗОПАСНОСТЬ ПРИ РАБОТЕ

Настройка

Шаг 1

Что означают эти предупреждающие надписи на химических веществах? Сопоставьте каждую этикетку с правильным предупреждением.

а) легковоспламеняющийся

б) вредные

) взрывчатое вещество

г) коррозионный

д) окислительный

е) токсичный

Шаг 2.

Перечислите некоторые потенциальные опасности в вашей лаборатории, мастерской или на работе. Как снижается риск этих опасностей?

Шаг 3.

Изучите инструкции по технике безопасности в мастерской ниже, а затем ответьте на эти вопросы.

а) Для кого инструкция?

б) Кто их написал?

в) Какова была цель писателей?

1. Всегда носите защитную одежду.

2. Всегда надевайте защитные очки при работе на токарных, фрезерных и шлифовальных станках и следите за тем, чтобы защита была на месте.

3. Поддерживайте порядок на рабочем месте.

4. Зоны между скамейками и вокруг машин должны быть свободными.

5. Инструменты следует убирать, когда они не используются, и сообщать о любых поломках и потерях.

6. Машины следует очистить после использования.

Чтение.

Понимание цели писателей.

Знание цели писателя, автора и предполагаемых читателей может помочь нам понять текст. Инструкции по технике безопасности на шаге 3 явно призваны побудить сотрудников осознавать безопасность и снизить риск несчастных случаев. Писатель, возможно, является руководителем или сотрудником службы безопасности компании, а предполагаемые читатели - операторы машин.Знание этих вещей может помочь нам понять значение любой части текста, которую мы, возможно, не понимаем.

Шаг 4.

Изучите документ компании по безопасности на странице в сети, а затем ответьте на эти вопросы.

Для кого этот документ?

а) машинисты

б) менеджеры

) все сотрудники

г) раненые работники

Кто написал этот документ?

а) представитель профсоюза

б) техник

) менеджер

г) медицинский персонал

3.Каковы намерения писателей?

а) для предотвращения несчастных случаев;

б) для оказания скорейшей помощи пострадавшим;

) для защиты компании;

г) предупреждать об опасностях.

Расследование происшествий .

Каждый раз, когда происходит несчастный случай, повлекший за собой травму (медицинский случай), повреждение оборудования и материалов или и то, и другое, требуется немедленное расследование несчастного случая непосредственным руководителем.Письменное предварительное расследование будет завершено к концу той смены или рабочего дня, в который произошло происшествие.

Ни в коем случае не должно быть задержки более 24 часов. Несоблюдение этого требования может повлечь за собой дисциплинарные взыскания, вплоть до увольнения. Без надлежащих данных расследования происшествий Компания может быть подвергнута судебным издержкам, претензиям и судебным искам, к которым она не имеет никакого отношения. Как минимум, предварительный отчет о расследовании аварии должен включать следующее:

1.Имя, род занятий и набор раненого рабочего.

2. Место и дата / время аварии.

3. Описание того, как произошла авария.

4. Непосредственные причины аварии - небезопасные действия и небезопасные условия.

5. Способствующие причины - показатели безопасности менеджера, уровень подготовки рабочих, несоответствующий порядок работы, плохое техническое обслуживание и т. Д.

6. Свидетели (а) - имя и ведомство.

7.Принятые корректирующие меры - когда.

Сотрудник, получивший травму, и любой сотрудник (-а), который был свидетелем инцидента, должны быть отдельно опрошены как можно скорее. Копия отчета должна быть отправлена ​​на рассмотрение менеджеру отдела кадров. Другой экземпляр отчета должен храниться в течение не менее, чем трудовой стаж травмированного сотрудника плюс пять (5) лет.

Шаг 5 .

Изучите этот краткий отчет об аварии.В каких случаях это не соответствует политике компании по сообщению о несчастных случаях?

Кому:

Имя

Отделение и местонахождение

Дата

Менеджер

Управление персоналом

17 мая

из:

Имя

Отделение и местонахождение

Тел.

Д.Тейлор Мех. Англ. Мастерская

Субъект

Предварительный отчет, авария

12 мая

Во вторник, на прошлой неделе, при повороте латунного компонента машинист Кеннет Оливер получил травму глаза. Его доставили в глазную больницу, где, насколько я понимаю, ему сделали операцию. Я считаю, что авария произошла по неосторожности.

Изучение языков. Создание правил безопасности.

.

Смотрите также