Авторизация |
![]() |
Не работает турбинаПочему может не включаться турбина - причины, сигналы. Как предотвратить поломку механизмаТурбина автомобиля является механическим агрегатом, поэтому можно с трудом избежать её неисправности. Одни поломки будут незначительными, а другие потребуют серьезного ремонтного вмешательства. Если не провести тюнинг турбины и её починку своевременно, неисправность повлияет на другие устройства автомобиля. В данной публикации мы расскажем о том, почему может не включаться турбина, раскрывая следующие тезисы:
Признаки неисправности турбины автомобиляПочему может не включаться турбина на авто? В первую очередь, следует обратить на первые сигналы, которые могут свидетельствовать о проблеме с турбиной. В них заключается и возможная причина неисправности. Что могло происходить с турбиной до того, как она перестала включаться:
Что влияет на работу турбиныМы рассмотрели причины и индикаторы, которые помогут разобраться в вероятной поломке. Но чтобы её избежать, следует рассмотреть основные факторы, которые влияют на правильную работу турбины. К ним относятся:
Предотвращение неисправностиТеперь понятно, почему может не включаться турбина. Но чтобы таких инцидентов не происходило, лучше принять соответствующие меры. Для продления срока службы турбины автомобиля, необходимо соблюдать такие правила:
Полезная информация: Что такое тюнинг турбины и как он проходит. признаки и как продлить срок ее работыТурбина, как и другой механизм автомобиля, имеет свой срок службы. Может прийти время, когда турбина перестанет включаться. Это явно сигнал, на который лучше отреагировать. Такие моменты упускать нельзя, ведь если турбина перестанет работать, она повлечет за собой поломку других механизмов. И тут возникает вопрос у любого автовладельца, хотя больше всего страдают это болезнью хозяева Фольксвагенов: «Нужно ли ставить новую систему или же купить картридж турбины пассат б5 и произвести замену?». Признаки поломки турбиныЕсли срок турбины пришел к концу, это можно определить по таким признакам:
Вдруг оказалось, что в автомобиле падает уровень масла и не слышно работы турбины, вероятнее всего повреждены вал и втулки турбины. В таком случае стоит сразу проверить крыльчатку. Как оценить сломана ли турбинаЧтобы понять, что турбина не работает, не обязательно нужно снимать ее с автомобиля. Для начала необходимо проверить крыльчатку на наличие люфта, он может быть осевой и радиальный. Радиальный люфт должен быть небольшим. Но осевого люфта быть не должно. Если же осевой люфт есть, турбина будет брать масло, и в скором времени заклинит. Если же появился нехарактерный свист в турбине, скорее всего причиной этому разгерметизация системы. Может быть такое, что звук идет будто из глубины. В таком случае не стоит сильно беспокоиться, ведь такой шум появляется в связи с увеличением пробега. Еще одной причиной может быть датчик давления нагнетаемого воздуха. Если он неисправен, турбина будет жить своей жизнью — то включаться, то выключаться. Как увеличить срок работы турбины: практические советыЧтобы продлить срок работы турбины, нужно следить за автомобилем:
Неисправности турбин: Эксплуатация, неисправности, восстановление и ремонт » 1Gai.RuЕсли турбина свистит: Самые распространенные неисправности автомобильных турбин.Начало 21 века можно смело назвать эрой турбокомпрессоров в автопромышленности. В настоящий момент большинство современных двигателей стали оснащаться турбинами, когда как еще 10-15 лет назад, турбомоторы были большой редкостью.
Смотрите также: Автомобильные турбокомпрессоры: Все самые важные факты
Почему же автопроизводители сделали турбокомпрессоры популярными в автопромышленности? Какие преимущества дает турбина современным силовым агрегатам? Надежны ли современные турбированные двигатели?
Но главный вопрос, который интересует многих, связан с их ремонтом и восстановлением. И так давайте ответим на все вопросы, которые интересуют автолюбителей, а также узнаем о функции современных турбокомпрессоров, о самых частых причинах неисправности и их ремонте. Как гласит американская поговорка "Ничто не заменит рабочий объем". Речь идет о двигателе внутреннего сгорания. С самого начала истории автопромышленности стало ясно, что для того чтобы увеличить мощность автомобиля, нужно увеличить объем силового агрегата. Долгое время инженеры и конструкторы не могли придумать, как уменьшить объем моторов, не снижая мощность. Ведь законы физики невозможно изменить.
Но с появлением турбокомпрессоров стало ясно, что законы физики не являются преградой для постепенного увеличения мощности при уменьшении рабочего объема силовых агрегатов. В итоге, начиная с 2000-х годов, в автопромышленности стали набирать популярность турбины, которые позволили существенно увеличить экономичность транспортных средств, добиться увеличения мощности, а также уменьшить объем моторов.
Сегодня современные технологии позволяют автопроизводителям с 1,6 литрового четырехцилиндрового мотора выдавать до 270 л.с. (например Peugeot RCZ-R). В итоге турбокомпрессоры позволили многим производителям автомобилей использовать вместо восьмицилиндровых моторов, шестицилиндровые силовые агрегаты без потери мощности. А в некоторых случаях многие шестицилиндровые двигатели стали даже мощнее своих восьмицилиндровых атмосферных аналогов.
Также в настоящий момент наблюдается тенденция по уменьшению количества цилиндров шестицилиндровых моторов. На рынке уже не мало машин, у которых вместо шестицилиндровых двигателей появились 4-х цилиндровые, с той же мощностью, но гораздо экономичней. В том числе недавно стали появляться и трехцилиндровые моторы, которые пришли на замену четырехцилиндровым.
Функция турбокомпрессораТурбокомпрессоры, также имеют другое название - турбины. Как правило, большинство автомобильных турбин используют энергию выхлопных газов в двигателе. То есть турбина раскручивается за счет давления выхлопных газов. За счет этого турбина нагнетает в двигатель дополнительную порцию кислорода, благодаря чему и повышается производительность автомобиля. Вот почему говорят - "двигатель с турбонаддувом".
По сути, конструкция турбокомпрессора состоит из двух отдельных турбин (улитки в отдельных корпусах). Одна часть турбины содержит колесо турбины (крыльчатка). Внутри второй части турбины (витка улитки) находится колесо компрессора (крыльчатка). Обе части улиток соединены друг с другом единым валом турбокомпрессора. Турбинное колесо находится в выхлопной системе двигателя - на выпускном коллекторе.
Давление горячих отходящих газов из выхлопной системы приводит турбину в движение (начинает вращаться колесо турбины) в очень быстрое движение. Например, турбина может раскручиваться до 300 000 оборотов в минуту. Так как обе части улиток турбокомпрессора соединены единым валом, от вращения колеса турбины начинает с той же скоростью вращаться колесо компрессора турбины, которое соединено с впускной системой двигателя.
При вращении колеса компрессора турбина засасывает дополнительный свежий воздух, который затем сжимается в корпусе компрессора и поступает под давлением в цилиндры двигателя.
При сжатии воздуха происходит нагрев турбины.
Для того чтобы избежать перегрева инженеры придумали систему охлаждения турбокомпрессора, которая позволяет отводить часть тепла, генерируемого в процессе сжатия воздуха.
В итоге, понижая температуру воздуха проходящего через турбины, система позволяет охладить непосредственно наддуваемый воздух, поступаемый в камеру сгорания двигателя. Это повышает эффективность и производительность силового агрегата.
Контроль давления наддуваДля того чтобы давление наддува воздуха в турбине не достигло критического уровня при увеличении скорости автомобиля (чем быстрее движется машина, тем больше выхлопных газов в двигателе и соответственно быстрее крутится турбина) турбокомпрессор постоянно находится под контролем вакуумной системы, которая регулирует его оптимальную работу.
В противном случае турбину и компоненты двигателя ждет перегрузка.
Обычно регулирование работы турбины происходит с помощью перепускного клапана, который установлен со стороны, где в турбокомпрессор поступают выхлопные газы.
Как вы уже поняли, клапан регулирует количество, поступаемых в турбину, выхлопных газов.
Соответственно, если турбина будет крутиться слишком быстро, то клапан уменьшит поступление выхлопных газов на колесо турбины, за счет стравливания лишнего давления выхлопных газов поступающих в турбину. Так как колесо турбины связано с колесом компрессора турбины единым валом, скорость вращения турбокомпрессора уменьшится. В результате уменьшится наддув воздуха.
Когда и как открыть клапан управляется с помощью вакуумного устройства. Это устройство состоит мембраны и пружины.
Турбины с изменяемой геометрией (ТИГ)Также существуют турбокомпрессоры с изменяемой геометрией. Чаще всего такие турбины можно встретить на дизельных двигателях. Турбина с изменяемой геометрией оснащена вместо перепускного клапана, специальными направляющими лопатками, которые контролируют поток выхлопных газов поступающих в турбокомпрессор.
Обычно такие турбины обозначаются аббревиатурой "VIG" (рус.:ТИГ - Турбина с изменяемой геометрией).
Направляющие лопатки управляются точно также как и обычные перепускные клапана турбин, с помощью вакуумной системы.
Когда лопатки турбины дизельного мотора закрыты, поток выхлопных газов проходит мимо турбокомпрессора. Соответственно турбина не работает.
Например, при низком или среднем диапазоне работы двигателя, лопатки турбины открыты на минимальный уровень, так как на низких оборотах мотора, как правило, не требуется мощности. Но, как только водитель утопит педаль в пол, лопатки открывают свободный доступ выхлопным газам в турбину, и в двигатель начинает поступать кислород под давлением, что мгновенно отражается на увеличении мощности.
К сожалению, система "VIG" чувствительна к высоким температурам. Поэтому, как правило, турбины с изменяемой геометрией используются преимущественно на дизельных моторах, где температура выхлопных газов значительно ниже.
И только компания Porsche использует турбины "VIG" на бензиновых моторах (модели: 911 Turbo и 718 Boxster / Cayman S). Для этого инженеры компании Porsche устанавливают турбокомпрессоры, компоненты которой сделаны из дорогих высокопрочных материалов, которые устойчивы к экстремальным температурам. Но в случае большой серии выпуска установка подобных турбин экономически не целесообразна. Вот почему, как правило, такие турбины либо устанавливаются только на дизельные силовые агрегаты, либо на бензиновые автомобили ограниченной серии, которые стоят больших денег.
Самые частые причины поломки турбиныСамой частой причиной выхода из строя турбины является повреждение внутренних компонентов турбокомпрессора из-за недостаточной их смазки маслом или полным его отсутствием.
Как мы уже сказали, большинство автомобильных турбин оснащены рабочим валом, которые при вращении испытывает немаленькие неравномерные нагрузки из-за постоянного изменения давления выхлопных газов. Опорная поверхность вала, который соединяет колесо турбины с колесом компрессора, смазываются маслом для уменьшения трения вращающихся компонентов турбины. Благодаря масленой смазке, компоненты турбины имеют долгий срок службы.
Если подача масла в турбокомпрессор ухудшается, на несущей поверхности вала турбины образуются канавки (выработка). В результате вал турбокомпрессора может сломаться.
По каким же причинам турбина может недостаточно смазываться? Чаще всего нехватка смазки в турбокомпрессоре связана с плохим качеством топлива, засорением масленой системы автомобиля, из-за наличия в масле топлива, из-за забитого масленого фильтра или же из-за забитых масленых каналов в двигателе.
Также быстрый выход из строя турбины может быть связан с "горячей парковкой" автомобиля. Например, если владелец машины после продолжительной езды на полном газе, припарковавшись, сразу заглушит двигатель, то существует риск быстрого износа компонентов турбокомпрессора.
Дело в том, при длительной работе двигателя на больших оборотах турбина может стать очень горячей (до 1000 С° по Цельсию). И если, припарковав машину, заглушить двигатель, то подача охлаждающей жидкости и масла в двигателе резко прерывается. В итоге прекращается охлаждение двигателя и соответственно турбокомпрессора.
Другим важным фактором износа турбины является образование углерода в масле двигателя в процессе эксплуатации машины. Углерод, как правило, может собираться в турбине в виде отложений. Это со временем приводит к тепловым проблемам, к дисбалансу работы турбины и т.п.
Именно поэтому любая автомобильная турбина нуждается в регулярном обслуживании. Например, в очистке. Для этого необходимо использовать специальный очиститель-спрей, который продается в автомагазинах.
Большинство турбин можно очистить без их демонтажа с машины. В том числе очиститель турбины также помогает удалять не только отложения углерода, но и ряд других веществ, которые могут образовываться на внутренних компонентах турбокомпрессора.
Повреждение турбины из-за грязного сажевого фильтраТак как турбина в автомобиле работает за счет выхлопных газов, то конечно частой причиной ее выхода из строя становятся проблемы в системе выпуска выхлопных газов.
Особенно уязвимыми являются дизельные двигатели, которые оснащены сажевым фильтром. Например, если забит сажевый фильтр, то это может увеличить давление выхлопных газов поступающих в турбину. В результате вал турбокомпрессора получает сверхнагрузку, что в итоге может привести к свисту турбокомпрессора. Этот необычный звук, как правило, говорит о том, что вал турбины поврежден.
Правда свист в некоторых турбинах также может возникнуть на ранних этапах нехватки масла в турбине. Но в любом случае, если в вашей машине вы начали слышать свист турбины, необходимо, как можно скорее, провести ее диагностику, для того чтобы вовремя предотвратить более серьёзные повреждения.
Насколько быстро забивается сажевый фильтр? Все конечно зависит от стиля вашей езды, условий эксплуатации автомобиля и от качества дизельного топлива. Например, если вы используете дизельный автомобиль преимущественно в городе, то сажевый фильтр может быстро выйти из строя из-за недостаточной температуры выхлопных газов.
Также не рекомендуется эксплуатировать дизельные автомобили в тихом режиме. Поэтому время от времени владельцы дизельных машин должны использовать машину на больших оборотах, чтобы прожечь выхлопную систему для удаления образовавшейся сажи.
Смотрите также: Все что нужно знать при использовании AdBlue в машине
Еще один опасный для турбины фактор, это любая неисправность системы выпуска отработавших газов, которая уменьшает поток выхлопных газов, поступающих в турбокомпрессор. Например, при повреждении выхлопных труб или износа прокладок выхлопной системы турбина начнет работать не эффективно, что в короткий срок может привести к выходу ее из строя. Поэтому любые неисправности выхлопной системы в автомобилях с турбированными моторами должны быть устранены в короткий срок.
Повреждения турбин, вызванные инородными теламиДругой известной причиной повреждения турбокомпрессоров является попадание в них инородных тел через воздухозаборник автомобиля. Из-за огромной скорости вращения элементов турбины даже мельчайшие частицы могут причинить ее внутренним компонентам значительный ущерб.
Для автомобилей с большим пробегом колеса компрессора турбины (крыльчатки) изнашиваются равномерно. В результате со временем мощность автомобиля снижается по мере износа колес турбины. Это происходит в связи с тем, что в двигатель начинает поступать, по мере старения компонентов турбины, гораздо меньше кислорода. Но подобное равномерное старение турбокомпрессора, идеальное стечение обстоятельств.
Чаще всего турбина выходит из строя неожиданно и не по причине окончания срока службы внутренних компонентов. Например, из-за сломанных лопастей колес турбины. В результате поломки хотя бы одной лопасти на колесе турбины происходит потеря баланса вращения. В итоге вал и его подшипники могут получить серьезное повреждение.
На заключительном этапе износа турбокомпрессора, старые вращающиеся колеса начинают шлифовать корпус турбины. В результате турбокомпрессор начинает уничтожать сам себя.
Легко ли диагностировать повреждение лопастей турбины?В случае если вы подозреваете износ компонентов турбины, для начала вы должны провести диагностику колес турбокомпрессора. Например, визуально осмотреть состояние колеса компрессора турбины вы можете достаточно легко. Для этого вам необходимо отсоединить от турбины модуль подачи воздуха. В результате вы сможете внимательно рассмотреть износ лопастей компрессора.
Но для того чтобы сделать диагностику колеса турбины со стороны выпускной системы двигателя. Для этого вам придется полностью снимать турбокомпрессор с двигателя и полностью его разобрать.
Правда чаще всего повреждается колесо компрессора, куда поступает воздух с улицы. Повреждение колеса со стороны выхлопной системы может произойти только при попадании в турбину посторонних предметов из двигателя.
Например, в случае обрыва ремня ГРМ (в случае, когда клапана двигателя встретились с поршнями) в результате чего двигатель вышел из строя. В этом случае после некачественной очистки двигателя от стружки и других компонентов разрушения, запуск мотора может привести к повреждению турбины.
В большинстве случаев автомобильные турбины подлежат ремонтуЕсли вы столкнулись с потерей мощности, свистящими шумами турбины, ростом потребления топлива или дымом, то, как правило, если ваша машина оснащена турбиной, скорее всего, существует проблема. Турбина неисправна. В этом случае автомобиль нужно как можно скорее отвезти на диагностику в специализированную мастерскую.
Помните, что ни в коем случае не стоит затягивать поездку в автосервис для диагностики турбины. В противном случае вы рискуете потерять в будущем большие деньги, поскольку турбокомпрессор может не подлежать после поломки восстановительному ремонту. В итоге вам придется покупать новую турбину, которая стоит огромных денег.
Кроме того, каждый владелец турбированной машины должен знать, что сломанные части турбины могут также привести к повреждению самого двигателя. В том числе при выходе турбины из строя также может пострадать еще один дорогостоящий компонент автомобиля - катализатор.
Смотрите также: Как заменить свечи зажигания без лишних хлопот
К счастью многие проблемы, связанные с работой турбины, могут быть устранены обычным ремонтом. Однако не все автомастерские осмелятся проводить подобные работы. Во многих сервисах в случае даже небольших проблем с турбиной часто советуют купить новую.
Тем не менее, помните, что большинство видов ремонтов турбокомпрессоров значительно продлевают ее срок службы. Поэтому поломка турбины не всегда означает, что пришло время покупать новый турбокомпрессор.
Но не всегда ремонт турбины оправдан. Все зависит от типа и вида неисправности. Например, часто в турбокомпрессорах выходят из строя несколько важных компонентов, в результате чего ремонт (переборка) турбины будет не целесообразен, поскольку дешевле будет приобрести новый турбокомпрессор. Пример повреждения втулок из-за износа Можно ли купить б/у турбину с гарантиейНа Российском рынке также доступны для приобретения восстановленные подержанные турбокомпрессоры. В отличие от новых, их стоимость значительно дешевле. Причем большинство подобных перебранных б/у турбин продаются с гарантией. Правда гарантия дается на небольшой срок. Тем не менее, для владельцев турбированных автомобилей это хороший способ сэкономить на покупке турбины.
Обычно процесс покупки подержанной восстановленной турбины заключается в простом обмене с доплатой. Обычно вы отдаете свою сломанную турбину, доплачивая за восстановленную, определенную сумму. В итоге, заплатив гораздо меньше денег за турбину, вы получаете хоть и не новый, но вполне рабочий турбокомпрессор. Как проверить турбину на дизельном двигателе![]() Необходимость проверить турбину дизельного двигателя своими руками может возникнуть по ряду причин. Выполнение диагностики турбокомпрессора на СТО зачастую потребует определенных финансовых затрат, так как специалисты в большинстве случаев подключают диагностическое оборудование, снимают турбину с двигателя для проверки. Чтобы выявить неисправности самостоятельно без снятия турбины, можно воспользоваться несколькими способами диагностики. На проблемы с турбокомпрессором могут указывать следующие прямые или косвенные признаки, которые проявляются в процессе работы силового агрегата:
В самом начале стоит отдельно отметить, что подобные симптомы могут возникать не только по причине неисправностей турбины, но данный элемент также находится в списке. Содержание статьи На начальном этапе диагностики следует проверить уровень и качество дизельного моторного масла. Также необходимо исключить возможное попадание сторонних предметов в турбокомпрессор. Далее приступаем к анализу цвета выхлопных газов. Падение мощности и черный цвет выхлопа дизеля говорит о переобогащении смеси. Это может указывать на недостаточное количество подаваемого в цилиндры воздуха по причине неисправностей во впуске. Тяга дизельного мотора может также пропадать в результате утечек на выпуске. Для проверки мотор необходимо завести и оценить звуки в процессе работы турбокомпрессора. Турбина не должна свистеть или скрипеть, не должно быть звука прорывающегося воздуха через соединения. Нужно проверить состояние и герметичность соединений патрубков, по которым осуществляется подача воздуха. Любые неплотности или повреждения недопустимы. Также обязательно проверяется состояние воздушного фильтра, так как загрязнение и снижение его пропускной способности приведет к недостаточной подаче воздуха в цилиндры. Турбину нужно дополнительно проверять на износ. Для диагностики ротор турбины потребуется провернуть вокруг своей оси. Присутствие небольшого люфта вполне допустимо. В том случае, если ротор касается корпуса, турбине необходим ремонт. Если дизель дымит белым или сизым выхлопом, тогда это указывает на попадание масла в цилиндры двигателя и его сгорание в рабочей камере. Подобная неисправность может возникать как по причине неисправностей турбокомпрессора, так и других узлов ДВС. Также на проблему указывает большой расход масла (около литра на 1 тыс. пройденных км.) В этом случае необходимо снова вернуться к проверке воздушного фильтра и ротора турбины. Загрязненный фильтр пропускает малое количество воздуха, что приводит к сильной разнице давлений между корпусом турбины и картриджем с подшипниками. Из этого картриджа масло начинает вытекать в корпус компрессора. Если неисправностей не выявлено, тогда нужно приступить к осмотру сливного маслопровода на наличие загибов, трещин и других дефектов. Еще одной причиной роста давления может служить активное попадание газов из камеры сгорания в картер двигателя, что препятствует нормальному сливу масла из турбины. Данная неисправность может быть связана с проблемами в работе системы вентиляции картерных газов, дизель начинает сапунить. На моторе с исправной турбиной во впускном и выпускном коллекторе не должно быть признаков обильного попадания масла. Снова проводим анализ состояния турбины на осевой люфт. Если с компрессором все в норме, тогда причины наличия масла в турбине заключаются именно в повышении давления в картере двигателя. Дополнительно возможно присутствие пробки в сливном маслопроводе. В случае шумной работы дизеля нужно проверить трубопроводы, через которые воздух подается под давлением, а также ротор турбокомпрессора. Ротор турбины во время прокрутки не должен касаться стенок. Повышенного внимания заслуживает состояние крыльчатки турбины. Любые зазубрины или признаки повреждений крыльчатки требуют немедленного ремонта компрессора. При обнаружении заметных дефектов ротора турбину необходимо снимать для детальной диагностики. Люфта во время осевого смещения вала турбины не должно быть заметно, так как допустимый люфт составляет 0,05 мм и его не почувствуешь. Смещение вала в радиальном направлении допускает присутствие микролюфта ( допустимое значение около 1мм.), который немного ощущается. Если при оценке состояния турбины замечены сильные отклонения от данных требований и показателей, тогда компрессор можно считать сильно изношенным или неисправным. Проверка турбонагнетателя на заведенном двигателеПроверять турбину на наддув следует так:
Если компрессор работает, тогда патрубок должен будет ощутимо раздуваться. При отсутствии производительности турбины этого не произойдет. Дополнительно следует оценить общее состояние патрубков, а также исключить возможность трещин и других дефектов впускного и выпускного коллектора дизельного двигателя. Читайте также
как определить скорую необходимость замены детали |Я, субъект персональных данных, в соответствии с Федеральным законом от 27 июля 2006 года № 152 «О персональных данных» предоставляю ООО "Мега групп" (далее - Оператор), расположенному по адресу 115191, г. Москва, Духовской переулок, дом 17, стр. 15, согласие на обработку персональных данных, указанных мной в форме веб-чата и/или в форме заказа обратного звонка на сайте в сети «Интернет», владельцем которого является Оператор. Состав предоставляемых мной персональных данных является следующим: ФИО, адрес электронной почты и номер телефона. Как проверить турбину на двигателе: рекомендации специалистаЕще 15-20 лет назад турбированные двигателя встречались только на грузовиках и спецтехнике. Но сейчас все чаще производители используют турбину на легковых автомобилях. На то есть свои причины. Ведь благодаря турбокомпрессору, можно значительно увеличить мощность двигателя и крутящий момент без потери расхода и увеличения камеры сгорания. К сожалению, данный элемент не вечен и со временем выходит из строя. Что же, давайте рассмотрим, как проверить работу турбины своими руками. Основные признаки неисправностиЕсли данный механизм начал давать сбои в работе, вы сразу это ощутите. В первую очередь, неисправность турбины будет отображаться на ходовых качествах автомобиля. Так, значительно пропадет динамика разгона. Машине будет трудно набрать нужную скорость, особенно на подъем или при загрузке. Также двигатель будет тяжелее набирать обороты. По сути, он превратится в обычный «атмосферник». А как известно, на трубированных автомобилях стрелка тахометра существенно «оживает» после определенного диапазона оборотов (2 и более тысяч, в заливистости от типа мотора). При неисправном компрессоре она будет тянуться вверх так же медленно, как и в начале. Еще один признак неисправности – это повышенный расход масла. Данный элемент требует постоянной смазки. Кроме этого, масло выполняет функцию теплоотвода. Производители утверждают, что на исправной турбине автомобиль не должен терять более двух литров масла на 10 тысяч километров. На грузовиках – до 10-15 процентов от общего объема смазанной системы. Если наблюдается проблема с расходом масла, вы заметите характерный запах из подкапотного пространства. Дело в том, что смазка попадает на раскаленный патрубок выхлопной системы и начинает гореть. При более серьезных неисправностях будет слышен характерный шум. Это может быть гул, вой или свист. Последний является нормой для любой турбины. Но если турбина свистит чрезмерно, это повод осуществить диагностику. Наряду с этим будут наблюдаться проблемы с оборотами. Мотор перестанет нормально держать «холостые». Стрелка будет «плавать», либо вовсе уходить за пределы одной тысячи. Как проверить турбину на двигателе? Ниже мы рассмотрим несколько способов.Черный дым из выхлопной и малая мощность. Что делать?Основная проблема заключается в несанкционированном поступлении воздуха в выпускной или впускной коллектор. Итак, как проверить турбину дизельного двигателя своими руками? Для начала запускаем мотор и прислушиваемся к его звуку работы. Так можно определить конкретное место поломки. Часто проблема заключается в лишнем «подсосе» воздуха или загрязненном воздушном фильтре. Чтобы проверить износ самой турбины, стоит произвести дефектовку ротора. Это один из основных элементов в системе. Итак, прокручиваем ротор вокруг оси. Небольшой люфт допустим. Но если ротор цепляет за корпус турбины, это уже ненормально. Из-за этого возникает характерный звук (гул) и пропадает мощность мотора. Выход из ситуации – замена ротора на новый.Сизый дым из выхлопнойЭтот признак может говорить о чрезмерном расходе масла. Смазка попадает в выхлопную систему и там сгорает. Основная причина заключается в недостаточном пропуске воздуха. Это может быть грязный фильтр, из-за чего создается разница в давлении между картриджем турбины и корпусом компрессора. Также стоит осмотреть повреждение на роторе и сливной маслопровод. Последний не должен содержать пробок и перегибов. Дополнительно проверяют давление картерных газов в системе. Это тоже может стать причиной повышенного расхода масла и синего дыма. При диагностике стоит обратить внимание и на сам выпускной коллектор. Никаких потеков масла на нем не должно быть. Если это так, нужно срочно смотреть маслопроводы и ремонтировать турбину.Проверяем наддувКак проверить турбину на дизеле без снятия? Запускаем двигатель, открываем капот и находим патрубок, который соединяет впускной коллектор и турбину. Его нужно пережать рукой, а затем отпустить. Далее помощник должен нажать на газ в течении трех секунд. В чем суть этой проверки? После нажатия на газ вы увидите, как патрубок под давлением раздувается. Если этого не произошло, значит, турбина не работает как положено. ДефектовкаЧтобы убедиться в исправности элемента, можно произвести его дефектовку. Как проверить турбину? Для этого отсоединяем патрубок, который идет на воздушный фильтр, и осматриваем лопатки турбины. Они должны быть без забоин и зазубрин, с правильной формой (не погнутые). При повреждении крыльчатки компрессор нужно менять, либо ремонтировать. Как еще проверить турбину? Осматриваем состояние патрубков. Они должны быть сухими, без следов масла. Как проверить снятую турбину? Для этого нужно подвигать вал в радиальном направлении. Большой люфт недопустим. Как его определить, не зная точных параметров? Люфт должен быть таким, чтобы крыльчатка не цеплялась за холодную часть корпуса. Также проверяется вал на люфт в осевом направлении. Зазор не должен превышать 0,05 миллиметров.Если на автомобиле используется воздушный радиатор (интеркуллер), его тоже необходимо осмотреть. Внутри него исключены потеки масла. В противном случае компрессор нуждается в ремонте. О герметичностиСтоит отметить, что даже при дефектовке невозможно определить поломку на 100 процентов. Дело в том, что подобные признаки могут наблюдаться и из-за негерметичных соединений впускного и выпускного тракта. По этой причине система не может произвести нормальную регулировку подачи топлива. Это ведет к повышенному расходу масла, топлива и падению мощности. ПрофилактикаЧтобы не задаваться вопросом, как проверить турбину, нужно знать меры профилактики. Несколько простых советов, отмеченных ниже, значительно продлят срок службы вашему элементу:
ЗаключениеИтак, мы выяснили, как проверить турбину разными способами. При возникновении проблем не стоит медлить с их устранением. Ведь повышенному износу подвергается не только компрессор, но и сам двигатель. Не используйте присадки, которые, по словам производителей, «лечат» турбину. Они никаким образом не восстановят заводские зазоры и уж тем более не вернут прежнее состояние треснутых лепестков крыльчатки. Все эти проблемы решаются только путем механического вмешательства, со снятием и дефектовкой. hystrix - Не работает приборная панель Spring TurbineПереполнение стека
не загружается для агрегирования в микросервисе Spring CloudПереполнение стека
Ethical Man: Почему не работают ветряные микровентиляторыСамое удручающее в попытках вести более экологически чистый образ жизни - это то, что все дело в бездействии. Нам говорят, что мы должны прекратить летать, перестать водить машину, перестать есть мясо, перестать обогревать наши дома ... список можно продолжать и продолжать. Так что приятно узнать, что вы можете сделать что-то, что уменьшит ваше воздействие на окружающую среду, И требует, чтобы вы купили себе хороший комплект для загрузки. Принесите отечественный ветряк! Для просмотра этого контента у вас должен быть включен Javascript и установлен Flash. Посетите BBC Webwise для получения полных инструкций. Если вы читаете через RSS, вам необходимо посетить блог, чтобы получить доступ к этому контенту. Что может быть экологически безопаснее, чем получение электричества от ветра, и что может быть лучше этического знака чести, чем турбина, крутящаяся на моей крыше? Это определенно то, о чем я думал три года назад, когда редактор Newsnight призвал меня и мою семью попытаться сделать наш образ жизни более экологичным. К сожалению, я был не единственным подражателем этики, который хотел пожать ветер. Когда я начал изучать возможность установки турбины в моем лондонском доме с террасами, лидер тори Дэвид Кэмерон объявил о своем стремлении сделать то же самое. Вопрос был в том, кто поднимет их первым? Три года спустя, ни у меня, ни у лидера партии тори нет турбины на крыше. Ответ очень прост. В большинстве городских районов Великобритании ветряные турбины просто не работают. Да, они вращаются, но они не вырабатывают значительного количества энергии. Почему нет? Вот немного науки ... (не волнуйтесь, вы сможете следить за ней). Простое уравнение дает силу ветра. Мощность = 0,5 х площадь сбора х куб скорости ветра. Это говорит нам о том, что мощность турбины связана с двумя факторами: размером турбины и силой ветра. Давайте сначала посмотрим на размер. Вернитесь к математике на экзаменах GCSE (я достаточно взрослый, чтобы сдавать экзамены O-level).Несомненно, вы смутно помните, что площадь круга равна константе пи (3,14), умноженной на радиус круга в квадрате. Это означает, что по мере увеличения длины лопатки турбины площадь сбора непропорционально увеличивается. Возьмите микротурбину, которую я планировал. Его лезвия имели длину 1,75 м, что давало площадь сбора чуть менее 10 кв. М. Крошечный. Сравните это с ветряными турбинами, которые я посетил в Техасе в начале этого года. У некоторых из них были лопатки турбины длиной 45 м, что дало собираемую площадь 6 358 кв. М.Огромный. Вывод ясен из математики - небольшие турбины имеют непропорционально меньшие площади сбора и, следовательно, вырабатывают значительно меньше энергии. А как насчет скорости ветра? Ключевым моментом здесь является то, что куб зависит от скорости ветра. Сила ветра связана с кубом скорости ветра. Так что при малых скоростях ветра практически ничего не получится. Когда это действительно дует, вы получаете много энергии. Вот почему. Удвойте скорость ветра, и вы получите в восемь раз больше мощности.Увеличьте его в четыре раза, и вы получите в 64 раза больше. В восемь раз больше скорости, а мы говорим о более чем 500-кратной мощности. Цифры, данные Windsave, компанией, которая собиралась установить мой ветряк, подтвердили это. Он хвастался, что его турбина 1,75 м будет вырабатывать 1 кВт мощности на скорости 12,5 м в секунду. Неплохо, но 12,5 м / с - это ветер силой 6 баллов, приличный ветер. Уменьшите скорость ветра вдвое до шести метров в секунду (умеренный ветер) и - благодаря этому закону куба - теперь вы получаете всего 120 Вт - это два стандартных лампы накаливания (10 энергосберегающих компактных флуоресцентных ламп). Хм, неплохо. Мой дом находится на склоне самого высокого холма в Лондоне и относительно незащищен, но мне сказали, что средняя скорость ветра, вероятно, будет от 4 до 5 метров в секунду. (Вы можете узнать скорость ветра в вашем районе здесь.) На таких скоростях мне повезло получить 25 Вт. Этого едва хватает на две энергосберегающие лампочки. Недостаточно, чтобы выполнить обещание компании сократить мои счета за электричество «до 30% в год». Сообщение ясное.В большинстве мест в Великобритании микроветровые турбины никогда не производят значительного количества электроэнергии. Совершенно абсурдно заявление, сделанное Energy Saving Trust, когда я планировал свою турбину, о том, что домашние ветряные турбины могут обеспечивать 4% всей потребности Великобритании в электроэнергии и сокращать выбросы углекислого газа на 6%. Это также предполагает, что правительству следует еще раз подумать о предложении щедрого зеленого тарифа на электроэнергию, вырабатываемую микроветровыми турбинами. И, если потребуется еще какое-то доказательство моей точки зрения, в сентябре этого года Windsave разорился. Конечно, не вся ветроэнергетика - это тупик. Наши расчеты говорят нам, что мощность резко возрастает по мере увеличения размера турбины и скорости ветра. Таким образом, 10-метровая турбина при ветре в 10 узлов генерирует в 100000 раз больше мощности, чем 1-метровая турбина при ветре в 1 узел. В самом деле, если бы Камден, мой местный совет, дал мне разрешение на проектирование одной из тех техасских громад, он бы генерировал значительную мощность - примерно 200 кВт - даже со скоростью 4 м / с. Но даже эти впечатляющие цифры не могут скрыть неудобную правду о ветроэнергетике: за исключением штормовых условий, это - по сравнению с ископаемым топливом - очень разреженный источник энергии. Профессор Дэвид Маккей, новый главный научный сотрудник Министерства энергетики и изменения климата, подсчитал это. Вместо кВт он рассчитывает мощность в кВт-ч и оценивает, что если мы разместим ветряные турбины в самых ветреных 10% страны, то в Британии мы будем производить только 20 кВт-ч в день на человека. По словам Маккея, для проезда 50 км среднего автомобиля требуется 40 кВтч. Добавьте морские турбины, покрывающие треть доступных мест на мелководье (44 000 турбин), и установите глубоководные турбины на полосе шириной 9 км по всему британскому побережью, и вы получите дополнительные 48 кВт-ч в день на человека. Это много энергии, но даже по весьма консервативным оценкам средний житель Великобритании потребляет 125 кВт / ч в день. Это приводит к удручающему выводу. Ветер - это, в лучшем случае, лишь частичное решение проблемы получения энергии с низким содержанием углерода. .новейших "турбинных" вопросов - Stack overflow на русскомПереполнение стека
Как работают ветряные турбины?Вы здесьВетровые турбины работают по простому принципу: вместо того, чтобы использовать электричество для производства ветра, как вентилятор, ветровые турбины используют ветер для производства электроэнергии.Ветер вращает похожие на пропеллер лопасти турбины вокруг ротора, который вращает генератор, который вырабатывает электричество. ![]() Ветер - это форма солнечной энергии, вызванная сочетанием трех одновременных событий:
Характер и скорость ветровых потоков сильно различаются по территории Соединенных Штатов и изменяются в зависимости от водоемов, растительности и различий в рельефе местности. Люди используют этот поток ветра или энергию движения для многих целей: для плавания, запуска воздушного змея и даже для выработки электроэнергии. Термины «энергия ветра» и «энергия ветра» описывают процесс, с помощью которого ветер используется для выработки механической энергии или электричества. Эту механическую мощность можно использовать для конкретных задач (например, измельчения зерна или перекачивания воды), или генератор может преобразовывать эту механическую мощность в электричество. Ветряная турбина преобразует энергию ветра в электричество, используя аэродинамическую силу от лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер проходит через лезвие, давление воздуха с одной стороны лезвия уменьшается. Разница в давлении воздуха на двух сторонах лопасти создает подъемную силу и сопротивление. Сила подъема сильнее сопротивления, и это заставляет ротор вращаться. Ротор подключается к генератору либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют использовать генератор меньшего размера.Этот перевод аэродинамической силы во вращение генератора создает электричество. Типы ветряных турбинБольшинство ветряных турбин делятся на два основных типа: Деннис Шредер | NREL 25897
Ветровые турбины с горизонтальной осью - это то, что многие люди представляют, когда думают о ветряных турбинах. Чаще всего они имеют три лопасти и работают «против ветра», при этом турбина поворачивается в верхней части башни так, чтобы лопасти были обращены против ветра.
Ветряные турбины с вертикальной осью выпускаются нескольких разновидностей, включая модель Дарье в стиле взбивания яиц, названную в честь ее французского изобретателя. Эти турбины являются всенаправленными, что означает, что для работы их не нужно настраивать так, чтобы они были направлены против ветра. Ветряные турбины могут быть построены на суше или в море в больших водоемах, таких как океаны и озера. В настоящее время Министерство энергетики США финансирует проекты по развитию морских ветроэнергетических установок в США.С. вод. Области применения ветряных турбинСовременные ветряные турбины можно разделить на категории по месту их установки и способу подключения к сети:
Наземные ветряные турбины имеют размеры от 100 киловатт до нескольких мегаватт. Более крупные ветряные турбины более рентабельны и объединены в ветряные электростанции, которые обеспечивают большую часть электроэнергии в электросети. Деннис Шредер | NREL 40484
Морские ветряные турбины обычно массивнее и выше Статуи Свободы. У них нет таких проблем с транспортировкой, как у наземных ветряных установок, поскольку крупные компоненты можно транспортировать на кораблях, а не по дорогам. Эти турбины способны улавливать мощные океанские ветры и генерировать огромное количество энергии. Когда ветряные турбины любого размера устанавливаются на стороне потребителя электросчетчика или устанавливаются в месте или рядом с местом, где будет использоваться производимая ими энергия, их называют «распределенным ветром». Многие турбины, используемые в распределенных приложениях, представляют собой небольшие ветряные турбины. Одиночные небольшие ветряные турбины мощностью менее 100 киловатт обычно используются в жилых, сельскохозяйственных и небольших коммерческих и промышленных целях. Небольшие турбины могут использоваться в гибридных энергетических системах с другими распределенными энергоресурсами, такими как микросети с питанием от дизельных генераторов, батарей и фотоэлектрических элементов. Эти системы называются гибридными ветровыми системами и обычно используются в удаленных местах вне сети (где подключение к коммунальной сети недоступно) и становятся все более распространенными в приложениях, подключенных к сети, для обеспечения отказоустойчивости. Узнайте больше о распределенном ветре из Distributed Wind Animation или прочтите о том, что Office Wind Energy Technologies делает для поддержки развертывания распределенных ветровых систем для домов, предприятий, ферм и местных ветровых проектов. В этом видео освещаются основные принципы работы ветряных турбин и показано, как работают различные компоненты для улавливания и преобразования энергии ветра в электричество.См. Текстовую версию. История ветроэнергетики США На протяжении истории использование энергии ветра увеличивалось и уменьшалось, от использования ветряных мельниц в прошлые века до высокотехнологичных ветряных турбин на ветряных фермах и т. Д. Учить большеУзнайте больше о ветровой энергии, посетив веб-страницу офиса Wind Energy Technologies Office или просмотрев информацию о финансируемых офисом мероприятиях. Подпишитесь на информационный бюллетень WETO Будьте в курсе последних новостей, событий и обновлений ветроэнергетики. .Весна- Netflix Turbine не создает правильный URL-адрес службы, если для параметра context-path установлено значение. Переполнение стека
|