Плотность в аккумуляторе


что это такое и ее значения

Большинство автомобилей комплектуются свинцово-кислотными аккумуляторными батареями. Принцип действия свинцовых аккумуляторов заключается в обратимой химической реакции свинца и его окиси, расположенный в пластинах и раствора электролита. В качестве электролита используется водный раствор серной кислоты Плотность электролита показывает концентрацию (степень разбавленности) кислоты.

Что такое плотность электролита

Серная кислота и вода могут смешиваться в любых пропорциях. Понятие плотность электролита введено для того, чтобы показать, какое количество чистой кислоты содержится в единице объем электролита.

Смешивая кислоту с водой, получают промежуточные значения. Чем больше воды содержит раствор, тем меньшее значение плотности он имеет, поскольку концентрированная кислота гораздо тяжелее:

  • дистиллированная вода – 1.00 г/см3;
  • концентрированная серная кислота – 1.84 г/см3.

Какую плотность имеет электролит в аккумуляторах

Плотность электролита в аккумуляторе имеет определенные значения, которые существенны для нормального протекания химических реакций в процессе работы. В зимний период и летом концентрация кислоты должна иметь разные значения. Особенно это касается регионов с большими колебаниями температуры. Несоответствие плотности оптимальным значениям может привести к отрицательным последствиям:

  1. Низкая плотность:
  • снижение КПД батареи из-за повышения внутреннего сопротивления;
  • снижение емкости, так как свинец пластин не полностью вступает в реакцию из-за недостатка кислоты;
  • вероятность замерзания при низких отрицательных температурах;
  1. Высокая плотность:
  • Сульфатация пластин из-за образования крупных труднорастворимых кристаллов сульфида свинца;
  • Осыпание пластин.

Важно! Плотность электролита в АКБ не является постоянной величиной. Это связано с тем, что во время разряда кислота из раствора реагирует с материалом пластин и ее концентрация падает. Во время зарядки происходит обратная реакция. Разность плотностей заряженного и разряженного аккумулятора составляет примерно 0.15 – 0.16 г/см3.

Таким образом, зная параметры электролита в полностью заряженном аккумуляторе, можно определить степень разрядки, не пользуясь измерительными приборами, а определив состояние электролита при помощи ареометра.

Измерения производят с учетом температуры, так как наблюдается сильная зависимость. Рекомендуемые значения относятся к измерениям при температуре от +20 до +30°С В других случаях поправки к измерениям должны иметь такие значения:

  • от +31 до +45°С + 0.01 гр/см3;
  • от +20 до +30°С + 0.00 гр/см3;
  • от +5 до +19°С — 0.01 гр/см3;
  • от +4 до -10°С — 0.02 гр/см3;
  • от -11 до -25° -03 гр/см3;
  • от -26 до -40° -04 гр/см3.

Зависимость плотности от степени заряженности

Для электролита автомобильного аккумулятора с нормальной плотностью 1.27 гр/см3 можно привести следующую зависимости от степени разряда батареи:

Плотность гр/см3 Уровень заряда Температура замерзания
1.27 100%, – 60°С;
1.26 95%, – 55°С;
1.25 87%, – 50°С;
1.24 80%, – 46°С;
1.23 75%, – 42°С;
1.22 70%, – 37°С;
1.21 63%, – 32°С;
1.20 56%, – 27°С;
1.19 50%, – 24°С;
1.18 44%, – 18°С;
1.17 37%, – 16°С;
1.16 31%, – 14°С;
1.15 25%, – 13°С;
1.14 19%, – 11°С;
1.13 13%, – 9°С;
1.12 6%, – 8°С;

В таблице плотности электролита приведена зависимость плотности и температуры замерзания. Приведенные данные показывают, что глубокий разряд батареи чреват ее замерзанием уже при температуре 8 — 16°С

Рекомендуемые значения плотности

Часто задаваемый вопрос – какая должна быть плотность электролита для лета и для зимы? Большинство производителей аккумуляторов рекомендуют придерживаться следующих значений плотности, в зависимости от минимальной зимней температуры. Важность контроля плотности электролита зимой связана не только с недопущением перемерзания электролита, но и повышением КПД батареи для успешного запуска непрогретого двигателя:

  • от +6 до +4° 22 гр/см3;
  • от +4 до -15° 24 гр/см3;
  • от -4 до -15° 26 гр/см3;
  • от -15 до -30° 28 гр/см3;
  • от -30 до -50° 29 гр/см3;

Перечисленные значения справедливы для полностью заряженных батарей. Заливка электролита в новую батарею производится раствором меньшей концентрации – на 0.02 гр/см3. В процессе зарядки значение поднимется до необходимой величины.

Нормой плотности электролита в средней полосе принято считать 1.26 – 1.27 гр/см3.

Коррекция плотности при смене сезона

При большой разнице среднесуточных температур в летний и зимний период рекомендуется корректировать значение плотности. Процесс не представляет сложности, но опасен из-за агрессивности электролита.

Если машина храниться в гараже и эксплуатируется регулярно, то необходимость в коррекции не возникает, поскольку в результате длительных поездок батарея успевает зарядиться до нормального состояния и содержание кислоты не палает до критических значений.

Кратковременные поездки не способствуют нормальному заряду. Старые аккумуляторы имеют повышенные значения саморазряда, поэтому после длительного простоя плотность может упасть до недопустимых значений.

Электролит корректируется на полностью заряженном аккумуляторе. Важно знать, что в большинстве автомобилей с правильно отрегулированной системой регулировки напряжения, уровень заряда аккумулятора не превышает 80 – 90%. В зимнее время при наличии большого числа мощных потребителей (вентилятор печки, обогрев стекол и сидений, свет фар), это значение еще меньше. Для правильной подготовки батареи к зимнему сезону необходима полная зарядка специализированным зарядным устройством.

Заряд производят при слабом кипении электролита до тех пор, пока в течении текущих двух часов плотность расти уже не будет. Рост плотности говорит о том, что заряд еще не окончен.

Плотность электролита в заряженном аккумуляторе измеряют через два часа после зарядки, чтобы пластины полностью освободились от пузырьков газа и снизилась температура. Не забывайте про учет температуры электролита!

Содержание кислоты повышают при помощи корректирующего электролита, который добавляют в банки взамен части основного электролита.

Важно! Отбор раствора из каждой банки батареи должен быть одинаковым! Количество добавляемого корректора также одинаково. Сколько убрано жидкости, столько корректирующего раствора нужно добавлять

Плотность электролита в аккумуляторе и зимой и летом проверяется после получаса дополнительного заряда с последующей двухчасовой выдержкой. Это делается с целью равномерного перемешивания электролита. Обязателен учет температуры.

Переход на летнюю эксплуатацию делается аналогично, только вместо более крепкой кислоты добавляется дистиллированная вода. Дополнительный заряд должен продолжаться более длительное время, поскольку добавляемая вода из-за низкого удельного веса будет находится в верхнем слое.

Важно! Нельзя ускорять перемешивание покачиванием и переворачиванием батареи, поскольку осадок с дна емкости попадет между пластинами и батарея выйдет из строя.

Выравнивание плотности

В процессе эксплуатации аккумулятора можно увидеть, что разные банки имеют расхождения при измерении плотности. Если эта величина не превосходит 0.01 – 0.02 гр/см3, то ничего страшного нет. Большая разница свидетельствует, что банка с меньшим значением начинает выходить из строя.

Встречаются рекомендации исправлять состояние неисправной банки путем долива корректирующего раствора. Этого делать нельзя ни в коем случае. Простое увеличение концентрации кислоты даст только отрицательный эффект и ускорит выход банки из строя.

В данной ситуации необходимо произвести тренировочный цикл заряда. Полностью заряженный аккумулятор разряжают до 50% номинальной емкости, а затем заряжают малым током до полного заряда. Повторяя процесс несколько раз, можно полностью восстановить неисправные банки батареи.

 

Такие же требования предъявляются к выравниванию уровня электролита. В процессе зарядки током бортовой сети происходит частичное испарение воды из банок. Особенно активно этот процесс происходит летом. Кислота при этом не испаряется, вопреки некоторым источникам из интернета. Поэтому уровень электролита выравнивается исключительно дистиллированной водой.

проверка и методы повышения плотности

Владельцы автомобилей часто сталкиваются с проблемой отказа двигателя от запуска. Подобное случается из-за разрядки аккумулятора и ухудшения свойств электролита. Перед тем как поднять плотность в аккумуляторе, нужно выяснить причину ухудшения качества кислотного раствора. После этого можно приступать к восстановлению батареи. Действия не представляют особых сложностей.

В процессе эксплуатации снижение плотности аккумулятора обычное явление, особенно при несвоевременной замены старого электролита.

Почему снижается плотность электролита

Снижению плотности способствуют такие факторы:

  1. Разряд. При потере заряда снижается и плотность наполнителя. Во процессе зарядки этот параметр постепенно увеличивается. Если батарея утрачивает большую часть емкости, речь идет о падении концентрации кислоты.
  2. Длительная эксплуатация или хранение в условиях низких температур.
  3. Выкипание электролита при перезаряде. Если зарядное устройство подает слишком высокое напряжение, жидкий электролит переходит в газообразное состояние и выводится наружу через имеющиеся на корпусе отверстия.
  4. Частое добавление воды. Водители добавляют жидкость для поддержания стабильного уровня электролита. Не все пользуются ареометром, измеряющим плотность. Вместе с водой выкипает и кислота, что приводит к снижению концентрации.

Пример сульфатации пластин автомобильного аккумулятора.

Опасности низкой и высокой концентрации кислоты

Повышенная концентрация электролита становится причиной преждевременного выхода батареи из строя. Кислота разрушает металлические пластины. К воздействию составов на основе серной кислоты чувствительна даже сталь.

Низкая концентрация приводит к таким проблемам:

  1. Сульфатация. На пластинах появляется налет, состоящий из сульфата свинца. Аккумуляторная батарея становится неспособной принимать заряд.
  2. Повышение порога замерзания. Жидкость кристаллизуется уже при -5°С. Лед сдвигает и повреждает металлические детали. При деформации пластин и коротком замыкании емкостей батарею восстановить невозможно. При плотности 1,28 г/см³ электролит замерзнет только при -58°С.
  3. Проблемы при запуске двигателя. Наиболее выражен этот признак в зимний период.

Для проверки плотности электролита используют денсиметр (справа).

Проверка плотности электролита

Определить плотность электролита можно в домашних условиях. Процедуру рекомендуется проводить при комнатной температуре.

Перед началом работы подготавливают такие инструменты:

  1. Защитные перчатки, костюм и очки. В состав наполнителя аккумулятора входит кислота. При попадании на кожу вещество вызывает химический ожог. Опасными являются и пары кислоты, поэтому работают только в хорошо проветриваемом помещении.
  2. Денсиметр. Прибор используется для измерения плотности. Имеет вид стеклянной трубки с грушей и встроенным ареометром.

Самостоятельно измерение плотности выполняют так:

Для проверки плотности электролита конец денсиметра погружают в ёмкость аккумулятора.

  1. Аккумулятор вынимают из посадочного гнезда. Защитный кожух демонтируют, вывинчивают пробки.
  2. Проверяют уровень электролита. В свинцово-кальциевых батареях раствор должен на 1,5 см закрывать пластины.
  3. Батарею полностью заряжают. Проверку плотности начинают через 5-6 часов после завершения зарядки. При нормальном уровне электролита трубку денсиметра погружают в банки, выкачивая небольшое количество жидкого наполнителя.
  4. Оценивают показатели прибора. Ареометр должен свободно плавать в растворе. Соприкосновение прибора со стенками емкости не допускается. Показания оценивают с учетом температуры окружающей среды.
  5. Проверяют плотность электролита в остальных банках. Показания записывают и сравнивают с нормальной плотностью.

Такой способ проверки подходит только для разборной батареи, когда имеется доступ к электролиту. Необслуживаемый аккумулятор снабжен индикатором, цвет которого меняется в зависимости от плотности наполнителя.

Как откорректировать плотность раствора

Нормальное показание лежит в диапазоне 1,25-1,29 г/см³. Если при температуре +25°С отмечается более низкое значение, его нужно повышать. Падение концентрации в одной из банок свидетельствует о коротком замыкании.

Высокие значения выявляются после зарядки мощным током, сопровождающейся кипением электролита. Повысить плотность можно путем добавления кислоты, заправки готового состава или использования зарядного устройства.

Плотность раствора в холодный период

В холодное время года плотность наполнителя заряженного аккумулятора должна составлять 1,27 г/см³. Дополнительная корректировка в регионах с суровым климатом при смене сезона не проводится.

Таблица зависимости плотности электролита в аккумуляторе от температуры.

Подготовка к восстановлению батареи

На этапе подготовки выполняют такие действия:

  1. Зарядка батареи. Нельзя начинать восстановление при низком заряде. Добавление электролита способствует резкому повышению концентрации кислоты. Это приводит к разрушению металлических пластин, при котором батарею утилизируют.
  2. Нормализация температуры электролита. Показатель лежит в пределах +20…+25°С. Уровень электролита в каждой банке должен быть нормальным.
  3. Осмотр батареи. Корпус не должен иметь трещин и сколов, особенно возле выводов. Повреждению способствует раскачивание при попытке снять прикипевшую клемму.

Повышение плотности электролита

Если плотность составляет более 1,18, доливают готовый состав с нормальной концентрацией серной кислоты.

Процедура включает такие этапы:

  1. Разрядка батареи. Долив электролита проводится только при полном разряде. Для этого АКБ подключают к мощной лампе или другому потребителю энергии.
  2. Подготовка корректирующего компонента. Уровень кислоты в таком средстве должен составлять не менее 1,4 г/см³.
  3. Добавление корректирующего состава. Предварительно откачивают часть имеющегося электролита. Густота раствора должна повыситься до 1,25. Действие выполняется для каждой банки. Объем доливаемой жидкости должен составлять не более 50% от откачанного. После добавления жидкости АКБ встряхивают, давая наполнителю перемешаться.
  4. Зарядка батареи. Аккумулятор оставляют на полчаса, что позволяет концентрации в банках выровняться. Элемент питания подключают к зарядному устройству на 30 минут. Сила тока должна быть минимальной. Через 2 часа после прекращения зарядки замеряют плотность и количество наполнителя. Если концентрация не поднимается, вышеуказанные действия повторяют.

Можно ли повысить минимальную плотность

Когда плотность падает до отметки ниже 1,18, добавление кислоты оказывается неэффективным. Для восстановления батареи используют раствор, содержащий большее, чем электролит, количество действующего вещества.

Перед заливкой нового электролита старый нужно слить.

Для замены наполнителя выполняют такие действия:

  1. Слив содержимого. Максимальное количество жидкости выкачивают грушей. Затем аккумулятор помещают в большую емкость и переворачивают на бок. В дне каждой банке формируют небольшое отверстие. Батарею возвращают в прежнее положение и дожидаются вытекания жидкого наполнителя.
  2. Добавление воды. Жидкость заливается через крышки банок для удаления остатков старого наполнителя. Сделанные ранее отверстия закрываются полимерным материалом, устойчивым к воздействию кислот.
  3. Заправка батареи новым раствором. Если все действия выполнены правильно, АКБ становится готовой к использованию. Недостатком метода является снижение срока эксплуатации аккумулятора. Несколько недель устройство проработает, однако потом придется покупать новое.

Как повысить при помощи зарядного устройства

Если концентрация кислоты упала за зиму, ее можно восстановить путем подачи слабого тока. Зарядка занимает не менее 3 суток, она считается эффективной при невозможности восстановления АКБ другими методами. Содержимое набравшей полную мощность батареи при зарядке начинает кипеть. Признаком испарения воды является образование мелких пузырьков на поверхности.

Избыток жидкости испарится, концентрация кислоты увеличится. Общий уровень наполнителя станет маленьким, поэтому придется добавлять готовый аккумуляторный раствор. После завершения процедуры пользуются ареометром. Если показатели прибора слишком низкие, зарядку и добавление электролита повторяют.

самый подробный обзор ?, какие должны быть в заряженном АКБ или при разрядке зимой и летом (таблицы с показателями и видео)

Плотность электролита в аккумуляторе автомобиля представляет собой соотношение химически активного вещества и дистилированной воды, залитых в банки АКБ в определенной пропорции. Данный параметр устанавливается в зависимости от условий использования транспортного средства и совокупности требований к автомобилю.

Какие должны быть плотность и уровень электролита

В регионах с умеренным климатом рабочий параметр плотности электролита должен составлять от 1,25 до 1,27 г/см3 ±0,01 г/см3.

Важно знать

Следует учитывать, что чем ниже плотность электролита в полностью заряженной батарее авто, тем дольше она прослужит.

Плотность кислоты с водой в банках автомобильного аккумулятора разная, и зависит от нескольких параметров:

  • заряженность батареи;
  • процентного содержания серы — чем больше концентрация раствора, тем более высокая плотность жидкости;
  • температуры раствора — чем больше это значение, тем ниже уровень плотности.

Оптимальный уровень электролита в аккумуляторе машины должен быть таким, чтобы в каждой банке раствор покрывал пластины с запасом 10-15 мм.

Таблица: плотность в зависимости от климатической зоны

Климатический район (среднемесячная температура воздуха в январе, °C)Время годаЗаливаемогоПолностью заряженная батареяБатарея разряжена
на 25%на 50%
Очень холодный (от -50 до -30)Зима1,28-1,291,301,261,22
Лето1,271,281,241,20
Холодный (от -30 до -15)Круглый год1,261,271,241,20
Умеренный (от -15 до -8)Круглый год1,241,271,241,20
Теплый влажный (от 0 до +4)Круглый год1,221,231,191,05
Жаркий сухой (от +4 до +15)Круглый год1,201,231,191,15

Плотность электролита в аккумуляторе зимой

В странах, где зимой температура воздуха опускается до -30 градусов данное значение должно быть на 0,01 г/см3 больше, а в областях с жарким климатом — на 0,01 г/см меньше. Если в зимнее время года температура воздуха опускается до -50 °C, то уровень плотности рекомендуется увеличивать до 1,29 г/см3. Если данный показатель будет меньше, это станет причиной снижения электродвижущей силы и возможного замерзания рабочего раствора.

Важно знать

Слишком высокий уровень плотности раствора электролита в банках аккумуляторной батареи повлияет на ее срок службы. Пониженный параметр становится причиной падения напряжения и трудному пуску силового агрегата.

Если плотность рабочего раствора в холодное время года снизится до 1,09 г/см3, это станет причиной замерзания аккумуляторной батареи уже при -7 градусах. Надо учитывать, что кратковременные поездки на транспортном средстве, составляющие менее 30 минут, не дают возможности рабочей жидкости полностью прогреться и эффективно заряжаться. Поэтому разряд электролита при низких температурах ежедневно растет, что серьезно влияет на уровень плотности.

Полезно знать

Для нового и исправного аккумулятора нормальная величина изменения плотности рабочей жидкости при полном заряде и разряжении составляет в диапазоне от 0,15 до 0,16 г/см3.

Таблица: температура замерзания электролита в зависимости от его плотности
Плотность электролита (г/см3)Степень заряженности (%)Температура замерзания, °C
1,110,0-7
1,126-8
1,1312,56-9
1,1419-11
1,1525-13
1,1631-14
1,1737,5-16
1,1844-18
1,1950-24
1,256-27
1,2162,5-32
1,2269-37
1,2375-42
1,2481-46
1,2587,5-50
1,2694-55
1,27100-60

Плотность электролита в аккумуляторе летом

Важно знать

Данный параметр для теплых и влажных климатических регионов должен составить не менее 1,22 г/см3 (эта величина является критической).

В конце весны и летом температура в моторном отсеке более высокая, что приводит к испарению воды из кислотного раствора и более активному протеканию электрохимических процессов в аккумуляторе. Это становится причиной повышенной токоотдачи.

В жаркое время года из-за высокой температуры особо остро стоит проблема обезвоживания для аккумулятора. Поскольку высокий уровень плотности негативно влияет на свинцовые пластины обслуживаемых и необслуживаемых батарей, рекомендуется, чтобы этот параметр имел отклонение на 0,02 г/см3 меньше номинального. В частности, если речь идет о южных регионах, где используется устройство. При снижении объема или количества рабочей жидкости и увеличения параметра плотности коррозийные процессы на электродных выходах могут увеличиться.

Причины изменения плотности

Список причин, которые приводят к изменению уровня плотности аккумулятора:

  1. Снижение уровня электролита в АКБ (приводит к повышению плотности).
  2. Уменьшение концентрации серной кислоты в аккумуляторе или так называемая сульфатация пластин. Сульфат свинца кристаллизуется, теряя способность участвовать в химических реакциях. В результате такого процесса аккумулятор уже не получится зарядить полностью даже при использовании внешнего зарядного устройства, поскольку не вся площадь пластин задействована в работе. Так как аккумулятор не заряжается до конца, то и плотность электролита не восстанавливается до своих исходных значений.
  3. Разряд батареи. Данная проблема особо актуальна для зимы и тех автомобилей, которые редко используются или где замена аккумулятора производилась давно.
  4. Неоднократная зарядка аккумулятора. Это приводит к закипанию раствора и его испарению, что снижает его количество и повышает концентрацию. В этом случае активных молекул для ионизации свинца и его солей становится меньше, соответственно снижается густота жидкости.
  5. Не осуществляется контроль за уровнем концентрации раствора в емкостях с электродами после каждого пополнения дистиллятом. С каждым новым разбавлением концентрата снижается доля электролита за счет испарения воды и небольшого количества электролитической жидкости.

Как самостоятельно проверить плотность электролита и степень разряженности батареи?

Прежде чем измерить плотность электролита нужно провести проверку и подготовку аккумулятора, затем произвест

Какая плотность должна быть в аккумуляторе зимой: оптимальные значения

Плотность электролита – главный параметр всех свинцово-кислотных электрических аккумуляторов, потому что он оказывает влияние на срок эксплуатации и ёмкость прибора.

Необходимо удерживать оптимальное значение показателя, чтобы гарантировать правильную работу АКБ. Оно зависит не только от климатических характеристик региона, в котором находится автомобиль, но и от времени года. К примеру, если плотность аккумулятора в зимний период составляет 1,25 г/см3, то это свидетельствует о критическом уровне, при котором транспортное средство не сможет завестись. Особенно речь идёт о районах, в которых температура может опускаться до -50 градусов. Однако при умеренном климате такое значение соответствует заявленным требованиям нормы. Следовательно, считается, что показатели в разные временные сезоны должны отличаться друг от друга.

Перед многими автовладельцами встаёт дилемма: разная или одинаковая должна быть плотность аккумулятора зимой и летом? Давайте разбираться.

Зима

Плотность электролита на зиму в аккумуляторе транспортного средства должна составлять около 1,27 г/см3. Но такое значение оптимально лишь для центральных районов России. В регионах, в которых температурный режим ниже -35 градусов, показатель изменяется в диапазоне от 1,28 г/см3 до 1,35 г/см3. Например, если автомобиль работает в условиях Крайнего Севера, то величина колеблется в пределах 1,31–1,35 г/см3. Возникает вопрос: почему плотность электролита в аккумуляторе зимой должна иметь такое значение? Существует две причины, дающих ответ на поставленный вопрос:

  1. Жидкость с большой вероятностью превратится в лёд при минусовой температуре, так как в ней доля воды превышает допустимую норму.
  2. Механизмы автомобиля замерзают в мороз и требуют увеличения электродвижущей силы, чтобы осуществить запуск двигателя. Даже лучшие модели автомобилей не смогут работать без дополнительной энергии. Уменьшение значения показателя вплоть до 1,1 г/см3 приведёт к замерзанию электрического аккумулятора.

Зимняя плотность аккумулятора находится на низком уровне. Следовательно, при разрядке она упадёт до критических значений. Чтобы решить эту проблему, желательно постоянно следить за состоянием АКБ. Чтобы проследить взаимосвязь между уровнем заряда и водным соотношением в составе электролита, можно рассмотреть различные сценарии при уменьшении АКБ на 25 % и 50 %:

  1. При первоначальной плотности в 1,30 г/см3 она сократится до 1,26 г/см3 и 1,22 г/см3.
  2. При начальном значении показателя в 1,27 г/см3 объём уменьшится до 1,23 г/см3 и 1,19 г/см3.
  3. При исходной величине в 1,23 г/см3 диапазон упадёт до 1,19 г/см3 и 1,15 г/см3.

Следовательно, плотность аккумулятора на зиму не должна опускаться ниже 1,27 г/см3. Однако нужно помнить, что электролит не может прогреться в результате ежедневных поездок от дома на работу, которые составляют менее получаса. Это в свою очередь влияет на АКБ, который получает необходимый уровень заряда только после осуществления разогрева. Значение показателя стремительно падает по причине того, что аккумуляторная батарея разряжается.

Таким образом, отвечая на вопрос, какая плотность аккумулятора должна быть зимой, можно привести таблицу оптимальных значений. Однако данные показатели характерны исключительно для полностью заряженной батареи. В случае если заряд находится на недостаточном уровне, то они будут больше.

Регион использования транспортного средстваЗначение показателя плотности, г/см3
Южные регионы1,25
Центральные регионы1,27
Северные регионы1,29
Регионы Крайнего Севера1,31

Лето

В летний период аккумуляторная батарея имеет проблему, связанную с потерей большого количества жидкости. Плотность рекомендуется держать на 0,02 г/см3 ниже значения, которое требуется по стандартам. В первую очередь такое замечание относится к регионам, расположенным на юге России.

Летом температурный режим под капотом, в котором располагается аккумулятор, повышен. Это влечёт за собой следующие моменты:

  1. Улетучивание жидкости из состава кислоты.
  2. Активное прохождение процессов превращения электрической энергии в химическую, протекающих в аккумуляторных кислотных батареях.

Всё это обеспечивает сильную отдачу тока, осуществляющуюся даже при минимальных допустимых показателях плотности электролита. Например, значение 1,22 г/см3 характерно для местности с тёплым и влажным климатом. Если уровень электролита систематически опускается, то это приводит к увеличению значения. Такой взаимосвязанный процесс является причиной химического разрушения проводников электрического тока. Поэтому контроль количества воды в АКБ – важная задача, выполнение которой является залогом грамотного ухода за автомобилем. Решение заключается в добавлении дистиллированной жидкости при понижении уровня электролита. Если данное действие опустить, то могут возникнуть проблемы с перезарядом и сульфацией.

Рассеянность автолюбителей – главный фактор, который лежит в основе разрядки аккумулятора. Другими словами, если водитель не уследил за состоянием АКБ, то нужно предпринять определённые меры. Они заключаются в обеспечении батареи зарядом при помощи специального устройства. Однако перед этим необходимо обратить внимание на уровень жидкости, которая могла испариться в процессе функционирования. Если это произошло, требуется долить очищенную воду без содержания каких-либо примесей.

Следовательно, рассмотрев, какая плотность должна быть в аккумуляторе зимой в зависимости от региона, нельзя не привести значения для летнего сезона.

Регион использования транспортного средстваЗначение показателя плотности, г/см3
Южные регионы1,25
Центральные регионы1,27
Северные регионы1,27
Регионы Крайнего Севера1,27

Как правильно откорректировать плотность электролита?

Автовладельцы часто сталкиваются с необходимостью поднять плотность в аккумуляторной батарее, что объясняется двумя причинами. Во-первых, периодическим регулированием количества дистиллированной жидкости. Во-вторых, частой зарядкой устройства, так как уменьшение интервала осуществления данного действия – первый признак того, что желательно провести процедуру повышения величины. Выделяют два способа корректировки значения показателя:

  • применение электролита, обладающего высокой концентрацией;
  • использование дополнительных кислот.

Чтобы изменить в нужном направлении плотность в аккумуляторной батарее, следует приобрести следующие предметы:

  • специализированный стакан с делениями, применяемыми для измерения объёма;
  • цистерна для создания нового раствора;
  • электролит или кислота корректирующего содержания;
  • очищенная жидкость.

Алгоритм действий по изменению значения включает в себя 5 этапов:

  1. Взять небольшое количество электролита с банки аккумуляторной батареи.
  2. Добавить корректирующий раствор в количестве, которое соответствует взятому на предыдущем этапе. Такое действие осуществляется при условии, что поставлена задача поднять плотность. Если необходимо получить противоположный результат, то регулирующий раствор заменяют на дистиллированную жидкость.
  3. Аккумулятор следует подзарядить с помощью специального устройства, так как номинальный ток даст возможность поступившей воде смешаться.
  4. После отключения АКБ от батареи целесообразно выждать в районе 2 часов. Это позволит плотности во всех банках встать на один уровень, что сделает вероятность возникновения погрешности при контрольном тестировании минимальной.
  5. Вторично осмотреть значение электролита. Если оно осталось на прежнем уровне, то повторно осуществить предыдущие этапы.

Плотность электролита изменяется в результате понижения в определённом отсеке аккумулятора. Причём предварительно полезно изучить номинальный объём, который в нём находится. Например, в классической стартерной батарее 6СТ-55 величина электролита равна 633 см3, а в 6СТ-45 – 500 см3. Если рассматривать его состав, то в него входят серная кислота и очищенная вода в процентном соотношении 40 на 60. Достичь необходимой плотности показателя можно, опираясь на представленные данные в следующей таблице:

Плотность аккумулятора, г/см3Обязательная величина параметра, г/см3
1,241,251,26
Забор электро-литаДолив раствора 1,40 г/см3Добавление жидкостиЗабор электро-литаДолив раствора 1,40 г/см3Добавление жидкостиЗабор электро-литаДолив раствора 1,40 г/см3Добавление жидкости
1,24---6062-120125-
1,2544-25---6570-
1,2685-8839-40---
1,27122-12678-8040-43
1,28156-162117-12080-86
1,29190-200158-162123-127
1,30---------

Продолжение таблицы

Плотность аккумулятора, г/см3Обязательная величина параметра, г/см3
1,271,281,30
Забор электро-литаДолив раствора 1,40 г/см3Добавление жидкостиЗабор электро-литаДолив раствора 1,40 г/см3Добавление жидкостиЗабор электро-литаДолив раствора 1,40 г/см3Добавление жидкости
1,24173175-252256----
1,25118120-215220----
1,268566-177180-290294-
1,27---122126-246250-
1,2840-436365-8198202-
1,2975-78---143146-
1,30109-11336-387981-

Отметим, что представленные данные соответствуют корректирующему электролиту с плотностью 1,40 г/см3. Если жидкость будет иметь другое значение, то возникает необходимость использовать следующую формулу расчёта для рассматриваемого показателя:

Представленные вычисления можно заменить методом золотого сечения, который гораздо проще применить на практике:

  1. Откачать больший объём воды из банки аккумулятора.
  2. Вылить полученную воду в специальный стакан с делениями, чтобы получить информацию о величине.
  3. Заполнить половину освободившегося объёма банки необходимым количеством электролита.
  4. Если значение ещё не соответствует требуемому, то долить ¼ от откаченной величины.
  5. Продолжать добавлять раствор до достижения оптимального результата.

Кислотная среда небезопасна для человека при неграмотном обращении. Целесообразно соблюдать все меры предосторожности, чтобы раствор электролита не попал на кожу или в дыхательные пути. Осуществлять корректировку рассматриваемой величины рекомендуется в помещениях с хорошей вентиляцией.

Возникают ситуации, в которых значение показателя опускается ниже 1,18 г/см3. В таких случаях использование электролита должно сопровождаться применением кислоты. Причём алгоритм действий изменения плотности включает в себя аналогичные этапы с одной поправкой: шаг разбавления при таком значении должен быть небольшим. Это связано с тем фактом, что плотность электролита имеет очень большую концентрацию, и возникает вероятность пропустить нужную отметку.

В процессе приготовления раствора в жидкость нужно вливать кислоту, а не наоборот.

При определённых обстоятельствах не представляется возможным исправить плотность электролита. Поэтому есть только один выход: купить новый аккумулятор. Возникает вопрос: как определить такие случаи? Очень просто: электролит становится коричневого оттенка, что свидетельствует об осыпании активной массы, принимающей участие в реакции электрохимического плана. Следовательно, это приводит к постепенной поломке аккумуляторной батареи.

Чтобы такая ситуация не застала врасплох, необходимо знать, что хороший АКБ будет служить в течение 5 лет при следовании всем эксплуатационным правилам. Следовательно, если данный срок истёк, то нет смысла проводить манипуляции по ремонту батареи. Если вы хотите, чтобы ваш прибор прослужил положенный срок, то следуйте следующим указаниям:

  • контролируйте плотность с помощью ареометра;
  • обеспечивайте грамотное обслуживание;
  • проверять уровень заряда.

Чем грозит завышенная или заниженная плотность электролита?

Оптимальный уровень плотности находится в пределах от 1,27 до 1,35 г/см3 в соответствии с сезоном и температурным режимом региона. Если значение рассматриваемого показателя выше нормы, то это свидетельствует о завышении, что отрицательно влияет на функционирование автомобиля. Данный процесс может привести к повреждениям аккумуляторной батареи. В ситуациях, при которых наблюдается противоположная картина, существует вероятность того, что автомобиль не заведётся. Главная причина в том, что АКБ замёрзнет при низких температурах.

Следовательно, необходимо контролировать значение, чтобы плотность электролита в аккумуляторе зимой и летом соответствовала оптимальной. Это поможет избежать возникновения непредвиденных обстоятельств. Однако сделать подобное проблематично, так как плотность изменяется при разных уровнях заряда аккумулятора. Например, при её уменьшении происходит поглощение дистиллированной жидкости батареей, что приводит к увеличению концентрации показателя. В обратных ситуациях возникает процесс сульфатации, ведущий к снижению уровня плотности. В результате этой химической реакции пластины наглухо закрываются и теряют возможность правильно заряжаться. Главный исход – выход из строя АКБ.

как измерить ее в батарее, почему она бывает высокой

Практически каждый автомобилист знает, насколько важно держать аккумуляторную батарею своего автомобиля в порядке. От ее состояния зависит не только возможность пуска двигателя, но и нормальная работа всего электрооборудования машины. К сожалению, далеко не всем известно, что исправность и «боеготовность» батареи зависит не только от своевременной и качественной ее зарядки, но и от нормальной плотности электролита в аккумуляторе.

Устройство и принцип работы АКБ

Для того чтобы качественно провести обслуживание аккумулятора и обеспечить правильную его работу, необходимо хотя бы приблизительно представлять, что у него внутри и как все это работает. Поэтому, прежде чем перейти к вопросам об электролите, необходимо понять, как устроен автомобильный аккумулятор и по какому принципу он работает.

Конструкция батареи

Практически все свинцово–кислотные батареи имеют одинаковую конструкцию. Состоят они из отдельных секций (банок), каждая из которых имеет набор положительных и отрицательных пластин. Первые называются катодными и выполнены из металлического свинца. Вторые, анодные, сделаны из диоксида свинца. Пластины собраны в пакет и помещены в кислотостойкую емкость, в которую впоследствии заливается рабочая жидкость – водный раствор серной кислоты или так называемый электролит.

Устройство секции свинцово-кислотного аккумулятора:

  • 1 – крышка банки;
  • 2 – корпус банки;
  • 3 – ребристый отстойник;
  • 4 – пластины, собранные в пакет;
  • 5 – отрицательный (анодный) вывод;
  • 6 – отрицательный (анодные) пластины;
  • 7 – диэлектрическая прокладка – сепаратор;
  • 8 – положительный (катодный) вывод;
  • 9 – положительные (катодные) пластины.

Готовые секции, соединенные последовательно, и являются аккумуляторной батареей. В шестивольтовых АКБ таких секций три, в 12-ти вольтовых – шесть.

Как это работает

Итак, конструкция АКБ достаточно проста, но каким образом на ее выводах появляется напряжение? Действительно, если взять батарею прямо из магазина и подключить к ней вольтметр, то прибор покажет «0». Отсутствие тока обусловлено тем, что электролит не заливается в батарею сразу после изготовления, и в стоящем на магазинной полке аккумуляторе пластины сухие. Рабочая жидкость заливается в АКБ уже после покупки.

Самое время выяснить, для чего нужен электролит. Поскольку положительные и отрицательные пластины имеют различный химический состав, между ними, погруженными в кислотный раствор, возникает разность потенциалов (примерно 2 В на секцию, чем и обусловлено количество секций в батарее). При подключении к клеммам АКБ нагрузки между пластинами, благодаря высокой электропроводности электролита, начинает течь ток. Одновременно начинается химический процесс преобразования диоксида свинца в сульфат свинца с участием серной кислоты. Как только количество диоксида и серной кислоты упадет до определенного уровня, процесс прекратится, и батарея перестанет вырабатывать ток – разрядится.

В процессе разрядки серная кислота и диоксид свинца расходуются на образование сульфата свинца

Но аккумуляторы, в отличие от гальванических элементов (батареек), могут восстанавливать свои химические свойства. Если подключить АКБ к источнику постоянного тока, то под его действием сульфат начнет разлагаться на диоксид свинца и серную кислоту. Батарея начнет заряжаться, преобразуя электрическую энергию в химическую. Как только количество диоксида и кислоты достигнет исходных величин, батарею можно считать заряженной.

Химические процессы, возникающие в батарее при ее разрядке и зарядке

Серная кислота, входящая в состав электролита, играет одну из основных ролей в работе АКБ. Именно от ее свойств будет зависеть качественная и долговременная работа батареи в целом.

Понятие плотности электролита

Вполне понятно, что количество серной кислоты и диоксида свинца в батарее должно быть сбалансированным – ведь они расходуются вместе. Поскольку количество диоксида свинца определяется производителем, автомобилисту после покупки аккумулятора остается лишь заправить АКБ необходимым количеством кислоты. Емкость секций батареи тоже фиксирована, поэтому в нее больше нормы не зальешь.

Остается единственный вариант – разбавить кислоту нейтральной к свинцу жидкостью, что и делается. Разбавляется кислота обычной водой, но дистиллированной, чтобы соли, содержащиеся в обычной воде, не нарушили чистоту раствора и не вывели АКБ из строя. Обычно автолюбитель покупает уже готовый электролит нужной плотности в автомагазине, хотя приготовить его можно и самостоятельно.

Процентное отношение воды к кислоте в полностью заряженном аккумуляторе составляет 70/30. Но при составлении электролита и его измерениях намного удобнее пользоваться единицами плотности – г/см. куб. или кг/м. куб. Удельный вес воды и кислоты различен, а значит, по общей плотности раствора можно судить о процентном соотношении его составляющих – концентрации.

Оптимальная концентрация кислоты

Пониженная концентрация, как правило, приводит к ускоренной сульфатации пластин – образованию на них нерастворимого сульфата свинца, который уже не может разложиться на кислоту и диоксид. В результате емкость батареи катастрофически падает, КПД уменьшается, а внутреннее сопротивление увеличивается (сульфат – диэлектрик).

Даже полностью заряженная, но сульфатированная батарея, выдающая, казалось бы, нормальное напряжение, садится после первого пуска, а то и вообще не в состоянии провернуть стартер. Кроме того, электролит с низкой плотностью замерзает при более высоких температурах, а значит, на стоянке даже при легком морозе батарею попросту разорвет льдом.

Чрезмерно высокая плотность электролита в аккумуляторной батарее не менее опасна, поскольку излишняя кислотность сокращает ресурс батареи в разы, буквально съедая пластины. Конечно, аккумулятор, залитый одной кислотой, будет крутить «как зверь», но сколько проживет такая АКБ? Сутки, может неделю. Если повезет – месяц.

А теперь пора вернуться к оптимальной плотности. В сети можно увидеть множество таблиц «рекомендованной» плотности, в зависимости от климатических условий. Если тепло – пониже, если мороз – повыше. Чем грозят эти «повыше» и «пониже», было описано в предыдущих абзацах. Поэтому не стоит изобретать велосипед, поскольку все эксперименты уже провели производители АКБ, а рекомендованная плотность приводится в сопроводительной документации.

С новым, сухим (сухозаряженным) аккумулятором все просто – в него заливается электролит комнатной температуры с плотностью 1.28 г/см. куб. Через час концентрация упадет до 1.26 – 1.27 г/см. куб., и батарея готова к работе. Далее, в процессе заряда/разряда аккумулятора и в зависимости от температуры окружающей среды, плотность раствора будет все время колебаться. Больше разряд – ниже плотность, идет заряд – плотность повышается. В нормально функционирующей АКБ отношение плотности к степени заряда и напряжению на клеммах выражается следующими показателями:

  • 1.265 кг/м. куб. — 12.6 … 12.7 В — полностью заряжена;
  • 1.225 кг/м. куб. — 12.3 … 12.4 В — 75%;
  • 1.190 кг/м. куб. — 12.0 … 12.1 В — 50%;
  • 1.115 кг/м. куб. — 11.8 … 11.9 В — 25%;
  • 1.120 кг/м. куб. — 11.6 … 11.7 В — разряжена;
  • ниже 1.120 кг/м. куб. — ниже 11.6 В — глубокий разряд.

Стоит обратить внимание на то, что все параметры батареи, включая плотность и напряжение, сильно зависят от температуры. Поэтому значения справедливы только при 26.7 градусах Цельсия. Если нужно провести измерения при другой температуре окружающей среды, то дополнительно придется воспользоваться таблицей плотности электролита от температуры, которую несложно найти в сети.

Выяснив зависимость плотности от выходного напряжения батареи, а значит, и от степени ее заряда, контролировать концентрацию электролита несложно. Достаточно замерить напряжение на клеммах отключенного аккумулятора любым вольтметром, затем измерить плотность и проверить их соответствие.

Проверка плотности рабочей жидкости

Для измерения плотности жидкостей существуют специальные приборы – ареометры или плотномеры. Есть такой и для автомобильных аккумуляторов. Выполнен он в виде большого шприца, внутри которого расположен поплавок со специально отградуированной шкалой.

Поплавок автоареометра комплектуется специальным «шприцем» для работы в узкогорлых секциях аккумуляторов.

Для того чтобы измерить плотность в аккумуляторе, со всех его секций сворачиваются пробки. Далее грушу ареометра сжимают, а его иглу погружают в секцию. Отпустив грушу, набирают в шприц электролит. При этом поплавок прибора всплывает. Плотность жидкости считывают со шкалы по тому уровню, до которого всплыл поплавок.

Поплавок всплыл до уровня 1.200. Плотность электролита – 1.2 г/см. куб.

После измерения грушу вновь сжимают, а после слива электролита обратно в батарею ареометр промывают проточной водой и сушат. Не следует забывать, что каждая секция – отдельная, независимая часть АКБ, поэтому плотность нужно измерить в каждой.

Когда и чем доливают аккумулятор

Необходимость доливки рабочей жидкости в батарею возникает нечасто, но она бывает необходимв. Что, сколько и в каких случаях нужно доливать? Всего таких случаев два: низкий уровень электролита и ненормальная кислотность рабочей жидкости.

Низкий уровень в секциях

Эта ситуация возникает часто, поскольку в процессе работы батареи вода испаряется или, как принято говорить, выкипает. При этом уровень раствора в секциях уменьшается, и края пластин оказываются сухими. Определить это можно визуально, просто свинтив пробки с секций и заглянув в заливные горловины. Нормальный уровень жидкости в секции должен быть примерно на 1 см выше уровня среза пластин. В некоторых АКБ даже имеется специальная метка, отштампованная на корпусе. Если уровень низкий, то ситуация хоть и серьезна, но устранить ее легко. Для этой операции понадобятся:

  • медицинский шприц без иглы или автомобильный ареометр;
  • дистиллированная вода;
  • средства защиты (очки и резиновые перчатки).

Дистиллированная вода набирается в шприц и заливается в соответствующие секции, до нужного уровня. После доливки жидкости в аккумулятор его ставят на зарядку. В этом плане автоареометр намного предпочтительней, поскольку, долив воду, тут же можно проконтролировать плотность раствора.

Следует соблюдать осторожность: нельзя работать с кислотой, если глаза не защищены.

Ненормальная кислотность

Если изначально батарея была заправлена как положено, то чрезмерно большая плотность электролита в аккумуляторе может появиться только в случае, если выкипела вода или измерения проводились при сильном морозе (с понижением температуры плотность повышается, и это нормально). В первом случае достаточно просто долить воду, во втором – произвести перерасчет или, что проще и правильнее, заняться измерениями в отапливаемом помещении.

А вот падение концентрации кислоты – ситуация реальная. Обычно это происходит из-за неправильной эксплуатации АКБ или ввиду ее «преклонного возраста». Причина – появление нерастворимого сульфата, который при своем образовании использовал кислоту, но уже не разлагается при зарядке, а значит, вернуть ее обратно в раствор не может. Ситуация не особо радостная, но восстановить плотность необходимо хотя бы для того, чтобы дотянуть до покупки новой батареи.

Прежде чем принять решение о доливке кислоты, необходимо еще раз убедиться в том, что плотность действительно ниже положенной при текущем состоянии АКБ. Если решение принято, то понадобятся ареометр, перчатки, очки и корректирующий электролит плотностью 1.35 — 1.40 г/см. куб. (в продаже есть и такой).

Корректирующий электролит для доливки в автомобильный аккумулятор

В крайнем случае подойдет и стандартный 1.28 г/см. куб., но, возможно, придется отобрать лишнюю жидкость из секции в отдельную емкость, чтобы освободить место для более «крепкого».

Методика доливки та же, что и воды, но при этом плотность в банке постоянно контролируется тем же ареометром.

Категорически запрещается поднимать концентрацию раствора доливкой чистой серной кислоты. Во-первых, это очень опасно, во-вторых, даже нескольких грамм концентрированной кислоты достаточно, чтобы кардинально изменить плотность раствора в секции, а значит, выставить нужную плотность пол-литровым ареометром исключительно сложно.

какая должна быть, как проверить, как поднять плотность

Какая плотность электролита должна быть в аккумуляторе

Добраться до электролита, измерить плотность и отрегулировать показатель можно только в обслуживаемых аккумуляторах. Они изготавливаются по технологии WET или иначе мокрых банок. Представляют собой пластиковый корпус, поделенный на 6 отсеков (банок). В отсеках находятся пакеты пластин, залитые электролитом. Каждая банка это отдельный маленький аккумулятор напряжением 2,1 вольт, соединённые последовательно. Поэтому на крайних контактах в сумме получается 12,5 – 12,6 В. Сверху отсеки закрыты крышкой с пробками. Через эти пробки можно контролировать состояние электролита. Внешне всё выглядит как пластиковая коробка с ручкой, пробками и двумя контактами плюс и минус.

Залитые свинцово – кислотные батареи до сих пор остаются самыми распространёнными АКБ (аккумуляторными батареями). Их используют в легковых и гольф автомобилях, газонокосилках и другой садовой технике, грузовиках и на водном транспорте. Имеют две отличительные особенности – низкую цену и необходимость обслуживания. В составе электролита никаких секретов нет, это водный раствор обыкновенной серной кислоты h3SO4.

Показатель плотности измеряют в весе одного кубического сантиметра раствора. В продаже имеется электролит для заливки плотностью - 1,28 г/см3 и так называемый, корректирующий - 1,33. Для изготовления электролита плотностью 1,28 при температуре 25 °С смешивают 0,285 мл кислоты с 0,781 лм дистиллированной воды.

Оптимальная плотность очень важна для стабильной и долговечной работы аккумулятора. Она зависит от уровня заряда и температуры окружающей среды при измерении. Достоверные данные можно получить только на полностью заряженной батарее с температурой электролита 25 °С.

Немаловажным фактором являются условия эксплуатации. Для жаркого и холодного климата используют батареи с различной плотностью. В условия Крайнего Севера при сильных морозах она должна быть 1,3 и снижаться до 1,23 в жарком климате при высокой температуре. Это связано с поведением электролита при различных температурах. На морозе он должен не замерзнуть и не закипеть в жару. Для эксплуатации в средних климатических условиях допускается плотность 1,27 полностью заряженной АКБ. На разряженной показатель снижается до 1,11 и ниже.

Как проверить плотность электролита аккумулятора

Обслуживаемые АКБ требуют повышенного внимания. Они склонны к выкипанию и разбрызгиванию электролита. Плотность в банках может разнонаправленно меняться. Поэтому замеры необходимо проводить через каждые 15 – 20 тыс. км пробега или весной и осенью.

Для измерения необходим ареометр, очки, резиновые или силиконовые перчатки и старая одежда. Электролит очень агрессивен. В зависимости от чувствительности, при попадании на кожу его можно не почувствовать. А вот глаза и слизистые оболочки нужно беречь. Попадание на одежду на первый взгляд незаметно. Но даже небольшие капли проявят себя. После стирки обнаружатся большие и маленькие дырки на любимых джинсах, рубашке или куртке.

Ареометр – единственный прибор для измерения плотности электролита. Состоит из стеклянной колбы с помещенным внутрь денсиметром. Сверху находится резиновая груша. Денсиметр, это запаянная стеклянная трубка с металлическими шариками в нижней части и утончённым верхом. В утонченной части расположена шкала.

Для измерения нужно открутить пробки. Нажать на грушу и поместить в заливное отверстие кончик ареометра. Отпустить грушу и набрать электролит до всплывания денсиметра. Он не должен касаться донышка и стенок колбы. Ареометр нужно держать в вертикальном положении. Денсиметр будет плавать, на плотность укажет шкала на уровне электролита. Предварительный замер укажет на состояние аккумулятора. Обычно крайние банки разряжены сильнее и плотность в них меньше средних. После замера надо проверить уровень электролита, если необходимо долить дистиллированную воду.

Состояние батареи можно оценить только полностью зарядив её. Заряжаем АКБ и даём отдохнуть пару часов. Зарядка сопровождается кипением и повышением температуры электролита. Для достоверного замера газы должны выйти, температура упасть. После остывания можно проводить измерение. В зависимости от этих результатов можно сделать выводы о состоянии АКБ.

Таблица плотности электролита в аккумуляторе

Состояние можно оценить сопоставив плотность и напряжение аккумулятора, это делают руководствуясь данными таблицы:

Плотность электролита, г/см3

Напряжение без нагрузки, В

Напряжение под нагрузкой 100 А, В

Уровень заряда, %

1,11

11,7

8,4

0

1,12

11,75

8,5

6

1,13

11,8

8,6

12

1,14

11,85

8,8

19

1,15

11,9

9

25

1,16

12

9,2

31

1,17

12

9,3

37

1,18

12,1

9,4

44

1,19

12,2

9,6

50

1,2

12,25

9,7

56

1,21

12,3

9,9

62

1,22

12,35

10

69

1,23

12,4

10,2

75

1,24

12,47

10,3

81

1,25

12,5

10,5

87

1,26

12,6

10,6

94

1,27

Не менее 12,66

10,8

100

Не всегда возможно создать идеальные условия для зарядки и измерения плотности электролита. В большинстве случаев применяют поправки. Для этого пользуются таблицей приведения полученных измерений.

Температура электролита от и до, °С

Температурная поправка, г/см3

+ 47 + 50

+ 0,02

+ 33 + 46

+ 0,01

+ 18 + 32

0

+ 4 + 17

- 0,01

+ 3 – 10

- 0,02

– 11 – 25

- 0,03

– 26 – 39

-0,04

– 40 – 50

-0,05

На что влияет плотность электролита в аккумуляторе

Отрицательно влияют на аккумулятор колебания плотности в обе стороны.

При повышенной бурный химический процесс ведет к выкипанию воды и разрушению пластин. Необходимо постоянно доливать дистиллированную воду. Срок эксплуатации АКБ резко снижается.

Низкая затрудняет пуск двигателя, а при отрицательной температуре электролит может попросту замерзнуть. В теплый период года затруднения можно не заметить, но зимой стартер не сможет прокрутить двигатель. Электролит плотностью 1,11 замерзает при температуре всег лишь - 10 °С. Аккумулятор с пониженной плотностью полностью не заряжается, что провоцирует сульфатацию пластин.

Соблюсти баланс помогает утвердившаяся практика использования электролита различной плотности в зависимости от климата:

  • Очень холодный и в условиях Крайнего Севера 1,3
  • Умеренный климат - большая часть РФ от 1,26 до 1,27
  • Южные районы страны от 1,23 до 1,25
  • Минимально возможное значение 1,23 г/см3

Как следствие, ненормированная плотность приводит к преждевременной сдаче аккумулятора в утиль.

Как поднять плотность электролита

Первое, что необходимо сделать - попробовать поднять плотность полностью зарядив аккумулятор. Открыть пробки, при необходимости долить дистиллированной воды и подключить зарядное устройство. Полная зарядка может привести к следующим результатам:

  1. Плотность во всех банках одинакова.
  2. Во всех ниже нормы.
  3. Различается более на 0,1 г/см3 и более.

В первом случае каких либо действий не требуется.

Во втором случае потребуется специфическая зарядка. На поверхности свинцовых пластин уже хорошо потрудившихся аккумуляторов откладывается сульфат свинца. В таком состоянии батарею невозможно зарядить полностью. Её необходимо разрядить и провести зарядку импульсным устройством автоматически переключив его на Десульфатацию.

Обычным устройством это сделать труднее и процесс длится дольше. Для этого на 2 часа установить ток зарядки в 1/10 от ёмкости АКБ. Например для аккумулятора 65 Ач, ток зарядки выставить 6,5 А. После этого снизить ток до 2 А и заряжать 8 – 12 часов. Дать отстояться батарее до комнатной температуры измерить плотность. Если не пришла в норму, опять разрядить и провести ступенчатую зарядку.

Десульфатация обычно проводится в два – три цикла. Отрицательный результат говорит о том, что с АКБ придётся расстаться. Можно ещё попробовать полностью слить электролит, промыть дистиллированной водой и залить новый. Но этого обычно хватает ненадолго.

В третьем случае, когда плотность в банках разница более чем на 0,1 надо попробовать провести десульфатацию. Не помогло – откорректировать. Для этого приобрести корректирующий электролит плотностью 1,33 – 1,4 и дистиллированную воду. В банках с ненормальной плотностью откачать по 20 мл электролита. Для повышения добавить корректирующий, для снижения дистиллят. Зарядить 30 минут, дать отстояться ещё полчаса и замерить. Скорее всего к успеху приведут несколько корректировок.

Усилия ни к чему не приведут, а аккумулятор окажется непригоден при буром цвете электролита. В этом случае можно не предпринимать никаких действий.

Не сильно изношенным аккумуляторам десульфатация и корректировка значительно продлевает жизнь. Если усилия не увенчались успехом, то с батарей нужно расстаться немедленно и без сожаления. Иначе непредвиденный отказ станет неприятным сюрпризом.

Срок службы АКБ при условии соблюдения элементарных правил до пяти лет. В автомобиле нужно контролировать напряжение, не допускать чрезмерного и нулевого заряда батареи. Периодически заряжать и следить за плотностью электролита. При таком отношении аккумулятор служит долго и безотказно.

Батарея

Сравнение плотности энергии

Рисунки на этой странице были получены из разного количества источников при различных условиях. Сравнение аккумуляторных элементов затруднено, и любое фактическое сравнение должно использовать проверенные данные для конкретной модели аккумулятора.

Батареи

работают по-разному из-за различных процессов, используемых разными производителями. Даже ячейка другой модели от того же производителя будет работать по-разному в зависимости от того, для чего они оптимизированы.

Вы также должны принять во внимание фактическое приложение, в котором используется аккумулятор. Это может существенно повлиять на производительность батареи, поэтому при выборе аккумуляторной батареи для вашего продукта необходимо учитывать множество факторов.

Для получения дополнительной информации см. Сообщение в нашем блоге о том, как выбрать тип элемента для использования в аккумуляторной батарее.


Сравнение плотности энергии в аккумуляторных элементах

Эта сравнительная таблица аккумуляторов показывает объемную и гравиметрическую плотности энергии на основе голых аккумуляторных элементов.

Фото предоставлено НАСА - Национальное управление по аэронавтике и исследованию космического пространства


Плотность энергии, сравнение размеров и веса

Приведенная ниже сравнительная таблица аккумуляторов показывает объемную и удельную плотности энергии, показывая меньшие размеры и меньший вес элементов.


Спецификации Battery Chemistry

Технические характеристики Свинцово-кислотный NiCd NiMH Литий-ионный
Кобальт Марганец Фосфат
Удельная энергия (Втч / кг) 30-50 45-80 60-120 150-190 100-135 90-120
Внутреннее сопротивление (мОм) <100
12 В в упаковке
100-200
Упаковка 6 В
200-300
6 В в упаковке
150-300
7.2В
25-75
на ячейку
25-50
на ячейку
Жизненный цикл (разрядка 80%) 200-300 1000 300-500 500–1 000 500–1 000 1 000–2 000
Время быстрой зарядки 8-16ч 1 час стандартно 2-4 часа 2-4 часа 1 ч или меньше 1 ч или меньше
Допуск перезарядки Высокая Умеренный Низкий Низкий.Не выносит непрерывного заряда
Саморазряд / месяц (комнатная температура) 5% 20% 30% <10%
Напряжение элемента (номинальное) 2 В 1,2 В 1.2В 3,6 В 3,8 В 3,3 В
Напряжение отключения заряда (В / элемент) 2,40
Поплавок 2,25
Обнаружение полного заряда
по сигнатуре напряжения
4,20 3,60
Напряжение отключения разряда (В / элемент, 1С) 1.75 1,00 2,50–3,00 2,80
Пиковый ток нагрузки
Лучший результат
5C
0,2C
20C
1C
5C
0,5C
> 3С
<1С
> 30 ° C
<10 ° C
> 30 ° C
<10 ° C
Температура заряда от -20 до 50 ° C
от -4 до 122 ° F
от 0 до 45 ° C
от 32 до 113 ° F
от 0 до 45 ° C
от 32 до 113 ° F
Температура нагнетания от -20 до 50 ° C
от -4 до 122 ° F
от -20 до 65 ° C
от -4 до 149 ° F
от -20 до 60 ° C
от -4 до 140 ° F
Требования к техническому обслуживанию 3-6 месяцев
(доплата)
30-60 дней
(выписка)
60-90 дней
(выписка)
Не требуется
Требования безопасности Термостойкость Термостойкость, общий предохранитель Обязательная схема защиты
Используется с Конец 1800-х годов 1950 1990 1991 1996 1999
Токсичность Очень высокий Очень высокий Низкий Низкий
.

Плотность энергии в аккумуляторных батареях или бензине

Ключевое различие между электрическими и бензиновыми автомобилями заключается в количестве энергии, которое каждый несет. Типичный (середина 2015 года) электромобиль, такой как Nissan Leaf, имеет емкость аккумуляторной батареи, эквивалентную примерно 2/3 галлона бензина. С такой энергией он может проехать 85 миль со скоростью по шоссе, в то время как бензиновый автомобиль едва сможет проехать 20 миль на 2/3 галлона бензина. Ключевым показателем является плотность энергии или количество энергии, переносимой в пределах данного размера или веса.

Увеличение плотности энергии аккумуляторной батареи

EV приведет к появлению доступных электромобилей с пробегом более 200 миль. Большим преимуществом бензина является его чрезвычайно высокая плотность энергии, но большим преимуществом электромобилей является их низкая стоимость топлива.

Бензин и дизельное топливо, основные виды топлива за последние 100 лет, обладают очень высокой плотностью энергии. Оба топлива легко транспортируются и распределяются по трубопроводу во внутренности двигателей внутреннего сгорания для взрывов, от которых запускаются автомобили.Индустрия ископаемого топлива обеспечила отличные возможности заправки топливом с помощью широко распространенных заправочных станций. Это, а также надежный электрический стартер - вот что позволило широко внедрить бензиновые автомобили и с первого раза убить электромобиль.

Системы хранения электроэнергии, с другой стороны, имеют относительно низкую плотность энергии. Для 80-мильного диапазона электромобилей в 24 киловатт-часа требуется довольно большой и тяжелый аккумулятор. И хотя вы можете прочитать это как осуждение, это огромное улучшение по сравнению с более старыми технологиями аккумуляторов, такими как свинцово-кислотные или никель-металлогидридные.Грубо говоря, у литий-ионных аккумуляторов плотность энергии в 4 раза выше, чем у свинцово-кислотных аккумуляторов, в 2 раза больше плотности энергии у никель-металлгидридных аккумуляторов, использовавшихся в предыдущей волне электромобилей, но в несколько раз меньше плотности энергии бензина. Это четырехкратное улучшение сделало электромобили с литий-ионным двигателем достаточно практичными для повседневного использования.

В 2017 году мы находимся в начальной точке новой волны развития электромобилей. Что сделало возможными доступные электромобили с пробегом более 200 миль? Автопроизводители снизили стоимость аккумуляторов и увеличили удельную энергию.

Точная терминология важна, если мы хотим правильно общаться друг с другом. К счастью, в Википедии есть несколько хороших страниц, которые помогают нам понять терминологию.

Плотность энергии - это объем накопленной энергии. Есть общее определение, такое как энергия в данной области пространства, и оно может применяться ко всем вещам, таким как магнитные поля. Но для электромобилей нам нужно сосредоточиться на извлекаемой энергии, хранящейся в аккумуляторной батарее.

Удельная энергия , аналогично, это количество энергии, запасенной по массе (весу). Как и в случае с плотностью энергии, удельная энергия используется в общем для всех видов вещей, но нам нужно сосредоточиться на извлекаемой энергии, хранящейся в аккумуляторной батарее.

Единицы измерения: Плотность энергии : киловатт-час / литр, Удельная энергия : киловатт-час / килограмм

Еще одна похожая терминология Плотность мощности .В электродвигателях и компонентах электропривода правильная фраза - удельная мощность . Он измеряет количество энергии (мощности), которое может выдержать система, в зависимости от размера или веса. Единица измерения - ватт на кубический метр, ватт на литр или ватт на килограмм. Похожая фраза - «соотношение мощности к весу».

С точки зрения физики, выполнение такой функции, как перенос вас и вашей семьи через холмы и через лес в дом бабушки, требует определенного количества энергии.

В транспортном средстве потенциальная энергия хранится в виде электричества в аккумуляторной батарее или бензина в топливном баке. Эта энергия преобразуется в кинетическую энергию в системе привода. Это либо возгорание, вызывающее вращение коленчатого вала, либо взаимодействие электромагнитных полей, вызывающее вращение вала электродвигателя. Полученная кинетическая энергия - это то, что переносит вас в дом бабушки.

У вашего автомобиля должно быть достаточно потенциальной энергии, чтобы все это могло произойти. Чем больше потенциальной энергии переносит ваш автомобиль, тем больше он может делать.Но у транспортных средств есть ограничения по размеру (объем в литрах) и по массе (массе), в которые должен входить накопитель энергии. Если размер или вес накопителя энергии станет слишком большим или тяжелым, транспортное средство будет неэффективным или, возможно, даже не сможет двигаться.

Если дом бабушки находится на расстоянии 2000 миль, электромобилю потребуется аккумулятор на 800 киловатт-часов, чтобы совершить поездку. Такую большую упаковку невозможно (с помощью сегодняшних технологий) сделать достаточно маленькой, чтобы поместиться в машине, и она будет настолько тяжелой, что машина не сможет двигаться.Если аккумуляторные блоки когда-либо смогут хранить в 10 раз больше энергии на килограмм и на литр, чем нынешние аккумуляторные блоки, тогда можно будет построить электромобиль с пробегом в 2000 миль.

Даже бензиновый автомобиль не может проехать 2000 миль. Владельцам бензиновых автомобилей приходится 7-8 раз останавливаться для дозаправки во время поездки. Владелец электромобиля также может отправиться в поездку, если есть достаточная инфраструктура для зарядки. Это преимущество владельцев бензиновых автомобилей - более полезная инфраструктура для заправки.

Tesla Motors доказала, что можно построить очень желанный электромобиль, поддерживающий опыт Road Trip. Tesla Model S с запасом хода на электроприводе 260-335 миль может перезаряжаться примерно за час, а Tesla Motors построила сети подзарядки, охватывающие весь континент в Северной Америке и Европе, и частично достигла цели в других местах, таких как Китай и Австралия. Но за этот автомобиль приходится двойная цена: вес, киловатт-часы в электромобилях и других штуковинах, и цена - около 100 000 долларов за автомобиль.Позже в 2017 году Tesla обещает Tesla Model 3 по базовой цене в 35000 долларов, что значительно изменит ситуацию.

Двумя серьезными препятствиями на пути внедрения электромобилей являются запас хода и относительно высокая стоимость по сравнению с аналогичными автомобилями с бензиновым двигателем. Обещано, что улучшения плотности энергии, эээ ... удельной энергии позволят электромобилям нести 60-80 киловатт-часов энергии на расстояние 200 миль по доступной цене.

Следующая диаграмма взята из страниц Википедии, на которые есть ссылки в каждой строке, так что относитесь к ней с недоверием.Для каждого типа батарей дается диапазон для каждого рейтинга, потому что в каждой строке обсуждаются все батареи от всех производителей данного типа. Конечно, каждая строка охватывает ряд продуктов, каждая из которых имеет свои особенности. Другими словами, не принимайте эти числа с большой точностью, а вместо этого обратите внимание на то, что, вообще говоря, в то время как NiMH батареи имеют более высокую плотность энергии, чем свинцово-кислотные, литий-ионные имеют более высокую плотность, чем оба.

Тип батареи Удельная энергия Плотность энергии Удельная мощность Цикл износостойкости Банкноты
Свинцово-кислотный аккумулятор 33–42 Втч / кг 60–110 Втч / л 180 Вт / кг 500–800 циклов Самая старая электрическая батарея, первоначально разработанная в 1850-х годах.Низкая стоимость поддерживает эту технологию.
Никель Кадмий 40–60 Вт · ч / кг 50–150 Вт · ч / л 150 Вт / кг 2000 циклов Эти никелевые батареи имеют историю, восходящую к 1890-м годам, и время от времени находили широкое применение. Их более высокая плотность энергии, чем у свинцово-кислотных аккумуляторов, делает их привлекательными. Однако, поскольку кадмий является канцерогенным, рыночная доля никель-кадмиевых аккумуляторов стремительно падает, и в некоторых регионах их просто невозможно купить.
Никель-металлогидридный 60–120 Втч / кг 140–300 Втч / л 250–1000 Вт / кг 500–2000 циклов Эти никелевые батареи имеют отрицательные электроды, изготовленные из металлического сплава, поглощающего водород. Работоспособная форма этого химического состава аккумуляторов была разработана Ovonic Battery Company (Energy Conversion Devices), но попала в ситуацию патентного обременения, что заставило некоторых кричать о нефтяных компаниях, пытающихся подорвать электромобили.Независимо от того, правда это или нет, никель-металлгидридные батареи менее интересны для электромобилей, потому что литий-ионные батареи имеют более высокую плотность энергии.
Никель Цинк 100 Вт · ч / кг 280 Вт · ч / л > 3000 Вт / кг 400–1000 циклов Первоначально разработан в 1901 году в лабораториях Эдисона. Несколько текущих производителей, включая PowerGenix.
Литий-ионный 100–265 Вт · ч / кг (0.36–0,95 МДж / кг) 250–620 Вт · ч / л (0,90–2,23 МДж / л) ~ 250- ~ 340 Вт / кг 400–1200 циклов Это батареи, в которых используется литий, но не в металлической форме, а ионно связанный с другими материалами. Есть несколько типов литий-ионных батарей, различающихся по химическому составу.
Литий-полимерный 100–265 Вт · ч / кг (0,36–0,95 МДж / кг) 250–730 Вт · ч / л (0,90–2,23 МДж / л) Литий-полимерные элементы имеют два значения.Название может относиться к «полимерному электроду» или, в других случаях, к ячейкам, упакованным в небольшие пакеты.
Литий-железо-фосфат 90–110 Втч / кг (320–400 Дж / г) 220 Втч / л (790 кДж / л) около 2400 Вт / кг 2000 циклов Этот химический элемент представляет собой тип литий-ионного аккумулятора, и, хотя его показатели плотности энергии более скромны, чем у других типов, они обеспечивают более длительный срок службы и по своей сути более безопасны.
Литий-сера 500 Вт · ч / кг продемонстрировано 350 Вт · ч / л оспаривается Этот химический состав является долгожданным преемником литий-ионных батарей из-за их очень высокой плотности энергии.Основная проблема - объемные искажения, то есть сильно вздувается аккумулятор. Это вызывает серьезную механическую нагрузку, и компоненты батареи быстро разрушаются.
Литий Воздух 11 140 (теоретическая) Вт · ч / кг ??? ??? ??? Этот тип батареи, впервые предложенный в 1970 году, очень сложно разработать. «Воздух» является частью цепи, но металлический литий быстро окисляется на воздухе.

4 февраля 2015 г. Генеральный директор Bosch Деннер « Электромобили - это хорошо, но подключенные электромобили - лучше », - генеральный директор Bosch Др.Фолькмар Деннер рассказал на симпозиуме CAR о будущих технологических тенденциях. Его компания поставляет запчасти нескольким производителям автомобилей, и они сделали большой набег на электрические велосипеды. Среди прогнозов - к 2015 году гибридные автомобили станут повсеместными, а к 2020 году батареи будут обеспечивать удвоение плотности энергии при 1/2 стоимости.

31 января 2015 г. SolidEnergy нацеливается на перезаряжаемый литий-металлический аккумулятор для смартфонов в 2016 году, аккумулятор для электромобилей с удвоенным запасом хода в 2017 году. Компания заявляет, что в 2017 году их партнеры по производству аккумуляторов будут поставлять автомобильный аккумулятор на 20 ампер-час с удвоенной плотностью энергии по сравнению с нынешними конструкциями.Они показали объемную плотность энергии 1200 Втч / л и 1337 Втч / л в 2-амперных ячейках-мешках. В их технологии используется твердый полимерно-ионный жидкий электролит (SPIL), изначально разработанный в Массачусетском технологическом институте и лицензированный им.

4 нояб.2014 г. OXIS Energy лидирует в мире, предлагая свои новейшие элементы по плотности энергии и емкости. Компания работает над литиево-серными батареями и объявила о создании элемента на 25 ампер-час с плотностью энергии 300 Втч / кг. Это работа, которая, по их словам, улучшилась в 12 раз за 18 месяцев.К середине 2015 года они планируют построить аккумулятор на 33 ампер-час и достичь плотности энергии 400 Втч / кг к концу 2016 года и 500 Втч / кг к концу 2018 года. Литий-серные элементы Oxis содержат литий-металлический анод; катод на основе серы; керамический пассивирующий слой сульфида лития; и негорючий электролит, защищающий металлический литий. Элементы OXIS имеют 100% доступную глубину разряда и не могут быть повреждены чрезмерным разрядом.

6 нояб.2014 г. Научная премия профессора доктора Мартина Винтеркорна в области электрохимии Выступая на церемонии награждения в Стэнфордском университете, д-р.Винтеркорн обсудил возможность улучшения характеристик батареи. В частности, он сказал, что у этой новой технологии есть «большой потенциал, возможно, увеличение дальности действия до 700 километров (1000 Втч / л)», сигнализируя о будущих конструкциях батарей с такой высокой плотностью энергии. Он также говорил о снижении стоимости до 100 евро за киловатт-час.

4 сентября 2014 г. Невада выбрана официальным сайтом Tesla Battery Gigafactory 30 июля 2014 г. Panasonic и Tesla подписывают соглашение об открытии Gigafactory Tesla Motors строит гигантский завод по производству аккумуляторных элементов.Обладая мощностью 50 гигаватт-часов в год, этот завод будет поставлять элементы для производства Model 3, а также для сетевых систем хранения энергии. Они ожидают, что стоимость аккумуляторов значительно снизится благодаря этой фабрике, а также внесут улучшения в технологии, тесно сотрудничая с партнерами-производителями.

Об авторе (ах)

Дэвид Херрон : Дэвид Херрон - писатель и инженер-программист, специализирующийся на разумном использовании технологий.Его особенно интересуют технологии чистой энергии, такие как солнечная энергия, энергия ветра и электромобили. Дэвид почти 30 лет работал в Кремниевой долине над программным обеспечением от систем электронной почты до потокового видео и языка программирования Java, а также опубликовал несколько книг по программированию на Node.js и электромобилях. Пожалуйста, включите JavaScript для просмотра комментарии от Disqus.комментарии предоставлены .

Плотность энергии в зависимости от плотности мощности

Плотность энергии - это количество энергии в данной массе (или объеме), а плотность мощности - это количество энергии в данной массе. Различие между ними аналогично разнице между энергией и мощностью. Батареи имеют более высокую плотность энергии, чем конденсаторы, но конденсатор имеет более высокую плотность мощности, чем батарея. Эта разница возникает из-за того, что батареи могут хранить больше энергии, но конденсаторы могут отдавать энергию быстрее.

Плотность энергии

Полная статья

Если система имеет высокую плотность энергии, то она способна хранить много энергии при небольшом количестве массы. Высокая плотность энергии не обязательно означает высокую плотность мощности. Объект с высокой плотностью энергии, но низкой плотностью мощности может выполнять работу в течение относительно длительного периода времени. [1] Примером такого типа накопителя энергии является мобильный телефон. Его питания хватит на большую часть дня, но для подзарядки устройства его необходимо подключить к другому источнику питания на час и более.

Рисунок 1. Это демонстрирует взаимосвязь между плотностью энергии и удельной мощностью. Например, топливные элементы будут иметь очень высокую плотность энергии при относительно низкой плотности мощности. [2]

Плотность мощности

Полная статья

Если система имеет высокую плотность мощности, она может выдавать большое количество энергии в зависимости от ее массы. Например, крошечный конденсатор может иметь такую ​​же выходную мощность, что и большая батарея. Однако, поскольку конденсатор намного меньше, он имеет более высокую плотность мощности.Поскольку они быстро высвобождают свою энергию, системы с высокой плотностью мощности также могут быстро перезаряжаться. Примером применения этого типа накопителя энергии является вспышка камеры. Он должен быть достаточно маленьким, чтобы поместиться внутри камеры (или мобильного телефона), но иметь достаточно высокую выходную мощность, чтобы осветить объект вашей фотографии. это делает систему с высокой удельной мощностью идеальной.

Пример

Чтобы лучше понять плотность энергии, представьте, что люди зажигают огонь в походе. Настал вечер, и пора S'mores, значит, пора развести костер.Естественно, огонь сначала разжигают растопкой. Его высокое отношение площади поверхности к объему означает, что он быстро сгорает - высокая удельная мощность. Как только огонь тухнет, растопка больше не является хорошим выбором топлива, потому что горит слишком быстро. Теперь огонь горит лучше с бревнами, потому что они имеют высокую плотность энергии. Одиночное полено хорошо горит долго.

Для дальнейшего чтения

Список литературы

  1. ↑ Б. Э. Лейтон, "Сравнение плотностей энергии преобладающих источников энергии в единицах джоулей на кубический метр", Int.J. Green Energy , т. 5, вып. 6. С. 438-455, декабрь 2008 г.
  2. ↑ "File: Lithium Ion Capacitor Chart.png - Wikimedia Commons", Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Lithium_Ion_Capacitor_Chart.png. [Доступ: 13 июля 2018 г.].
.

Заряд в секундах, в последние месяцы

(Pocket-lint). Хотя смартфоны, умные дома и даже умные носимые устройства становятся все более совершенными, их мощность все еще ограничена. Аккумулятор не совершенствовался десятилетиями. Но мы находимся на пороге революции власти.

Крупные технологические и автомобильные компании слишком хорошо осведомлены об ограничениях литий-ионных аккумуляторов.В то время как чипы и операционные системы становятся более эффективными для экономии энергии, мы все еще рассматриваем только один или два дня использования смартфона, прежде чем потребуется подзарядка.

Хотя может пройти некоторое время, прежде чем мы сможем прожить неделю жизни наших телефонов, разработка идет хорошо. Мы собрали все лучшие открытия в области аккумуляторов, которые могут быть с нами в ближайшее время, от беспроводной зарядки до сверхбыстрой 30-секундной подзарядки. Надеюсь, скоро вы увидите эту технологию в своих гаджетах.

NAWA Technologies

Электрод из углеродных нанотрубок с вертикальной ориентацией

Компания NAWA Technologies разработала и запатентовала сверхбыстрый углеродный электрод, который, как утверждается, изменил правила игры на рынке аккумуляторов.В нем используется конструкция с вертикально расположенными углеродными нанотрубками (VACNT), и NAWA заявляет, что он может увеличить мощность батареи в десять раз, увеличить запас энергии в три раза и увеличить срок службы батареи в пять раз. Компания считает, что электромобили являются основным бенефициаром, уменьшая углеродный след и стоимость производства аккумуляторов, одновременно повышая производительность. NAWA заявляет, что дальность действия 1000 км может стать нормой, а время зарядки сокращено до 5 минут, чтобы достичь 80 процентов. Технология может быть запущена в производство уже в 2023 году.

Литий-ионная батарея без кобальта

Исследователи из Техасского университета разработали литий-ионную батарею, в которой в качестве катода не используется кобальт. Вместо этого он переключился на высокий процент никеля (89 процентов), используя марганец и алюминий в качестве других ингредиентов. «Кобальт - наименее распространенный и самый дорогой компонент в катодах аккумуляторных батарей», - сказал профессор Арумугам Мантирам, профессор кафедры машиностроения Уолкера и директор Техасского института материалов.«И мы полностью устраняем это». Команда говорит, что с помощью этого решения они преодолели типичные проблемы, обеспечив длительный срок службы батареи и равномерное распределение ионов.

SVOLT представляет батареи для электромобилей, не содержащие кобальт

Несмотря на то, что свойства электромобилей по снижению выбросов широко распространены, все еще существуют разногласия по поводу аккумуляторов, особенно по поводу использования таких металлов, как кобальт. Компания SVOLT, штаб-квартира которой расположена в Чанчжоу, Китай, объявила о производстве безкобальтовых батарей, предназначенных для рынка электромобилей.Помимо сокращения содержания редкоземельных металлов, компания заявляет, что они обладают более высокой плотностью энергии, что может привести к дальности действия до 800 км (500 миль) для электромобилей, а также продлить срок службы батареи и повысить безопасность. Мы не знаем, где именно мы увидим эти батареи, но компания подтвердила, что работает с крупным европейским производителем.

Тимо Иконен, Университет Восточной Финляндии

На шаг ближе к литий-ионным батареям с кремниевым анодом

Стремясь решить проблему нестабильного кремния в литий-ионных батареях, исследователи из Университета Восточной Финляндии разработали метод производства гибридного анода. , используя микрочастицы мезопористого кремния и углеродные нанотрубки.В конечном итоге цель состоит в том, чтобы заменить графит в качестве анода в батареях и использовать кремний, емкость которого в десять раз больше. Использование этого гибридного материала улучшает характеристики батареи, в то время как силиконовый материал устойчиво производится из золы шелухи ячменя.

Университет Монаша

Литий-серные аккумуляторы могут превзойти литий-ионные, менее вредно для окружающей среды

Исследователи из Университета Монаша разработали литий-серные аккумуляторы, способные питать смартфон в течение 5 дней, превосходя литий-ионные.Исследователи изготовили эту батарею, имеют патенты и интерес производителей. У группы есть финансирование для дальнейших исследований в 2020 году, заявив, что дальнейшие исследования автомобилей и использования сетей будут продолжены.

Утверждается, что новая технология аккумуляторов оказывает меньшее воздействие на окружающую среду, чем литий-ионные, и снижает производственные затраты, при этом предлагая возможность питания автомобиля на 1000 км (620 миль) или смартфона в течение 5 дней.

Аккумулятор IBM получен из морской воды и превосходит по своим характеристикам литий-ионный

IBM Research сообщает, что он обнаружил новый химический состав аккумулятора, который не содержит тяжелых металлов, таких как никель и кобальт, и потенциально может превзойти литий-ионные.IBM Research утверждает, что этот химический состав никогда раньше не использовался в комбинации в батареях и что материалы можно извлекать из морской воды.

Производительность аккумулятора многообещающая, при этом IBM Research заявляет, что он может превзойти литий-ионный в ряде различных областей - он дешевле в производстве, он может заряжаться быстрее, чем литий-ионный, и может иметь как более высокую мощность. и плотности энергии. Все это доступно в аккумуляторах с низкой горючестью электролитов.

IBM Research отмечает, что эти преимущества сделают ее новую технологию аккумуляторов подходящей для электромобилей, и вместе с Mercedes-Benz, среди прочих, компания работает над превращением этой технологии в жизнеспособную коммерческую батарею.

Panasonic

Система управления батареями Panasonic

В то время как литий-ионные батареи повсюду и их количество растет, управление этими батареями, включая определение того, когда у них закончился срок службы, затруднено.Panasonic, работая с профессором Масахиро Фукуи из Университета Рицумейкан, разработала новую технологию управления батареями, которая значительно упростит отслеживание батарей и определение остаточной стоимости литий-ионных в них.

Panasonic заявляет, что ее новую технологию можно легко применить с изменением системы управления батареями, что упростит мониторинг и оценку батарей с несколькими составными ячейками, которые вы можете найти в электромобиле. Panasonic сообщает, что эта система поможет продвинуться в направлении устойчивого развития, поскольку сможет лучше управлять повторным использованием и переработкой литий-ионных батарей.

Асимметричная модуляция температуры

Исследования продемонстрировали метод зарядки, который приближает нас на шаг ближе к сверхбыстрой зарядке - XFC - который направлен на обеспечение 200 миль пробега электромобиля примерно за 10 минут с зарядкой 400 кВт. Одна из проблем с зарядкой - это литиевая гальваника в батареях, поэтому метод асимметричной температурной модуляции заряжает при более высокой температуре для уменьшения гальванического покрытия, но ограничивает это до 10-минутных циклов, избегая роста межфазной границы твердого электролита, что может сократить срок службы батареи.Сообщается, что этот метод уменьшает деградацию батареи, позволяя заряжать XFC.

Pocket-lint

Песочная батарея дает в три раза больше времени автономной работы

В этом альтернативном типе литий-ионной батареи используется кремний для достижения в три раза большей производительности, чем у современных графитовых литий-ионных батарей. Батарея по-прежнему литий-ионная, как и в вашем смартфоне, но в анодах используется кремний вместо графита.

Ученые из Калифорнийского университета в Риверсайде какое-то время занимались нанокремнием, но он слишком быстро деградирует и его трудно производить в больших количествах.Используя песок, его можно очистить, измельчить в порошок, затем измельчить с солью и магнием перед нагреванием для удаления кислорода, что приведет к получению чистого кремния. Он пористый и трехмерный, что помогает повысить производительность и, возможно, продлить срок службы батарей. Изначально мы начали это исследование в 2014 году, и теперь оно приносит свои плоды.

Silanano - стартап в области аккумуляторных технологий, который выводит эту технологию на рынок и получил большие инвестиции от таких компаний, как Daimler и BMW. Компания заявляет, что ее решение может быть применено к существующему производству литий-ионных аккумуляторов, поэтому оно настроено на масштабируемое развертывание, обещая прирост производительности батареи на 20% сейчас или на 40% в ближайшем будущем.

Захват энергии от Wi-Fi

Хотя беспроводная индукционная зарядка является обычным явлением, возможность захвата энергии от Wi-Fi или других электромагнитных волн остается проблемой. Однако группа исследователей разработала ректенну (антенну, собирающую радиоволны), которая представляет собой всего лишь несколько атомов, что делает ее невероятно гибкой.

Идея состоит в том, что устройства могут включать в себя эту ректенну на основе дисульфида молибдена, чтобы энергия переменного тока могла быть получена от Wi-Fi в воздухе и преобразована в постоянный ток, либо для подзарядки батареи, либо для непосредственного питания устройства.Это может привести к появлению медицинских таблеток с питанием без необходимости во внутренней батарее (что безопаснее для пациента) или мобильных устройств, которые не нужно подключать к источнику питания для подзарядки.

Энергия, полученная от владельца устройства

Вы можете стать источником энергии для своего следующего устройства, если исследования TENG принесут свои плоды. TENG или трибоэлектрический наногенератор - это технология сбора энергии, которая улавливает электрический ток, генерируемый при контакте двух материалов.

Исследовательская группа из Суррейского института передовых технологий и Университета Суррея дала представление о том, как эту технологию можно использовать для питания таких вещей, как носимые устройства. Хотя мы еще далеки от того, чтобы увидеть это в действии, исследование должно дать дизайнерам инструменты, необходимые для эффективного понимания и оптимизации будущей реализации TENG.

Золотые батареи с нанопроволокой

Великие умы Калифорнийского университета в Ирвине создали треснувшие батареи с нанопроволокой, которые могут выдерживать много перезарядок.В результате в будущем батареи могут не разрядиться.

Нанопроволока, в тысячу раз тоньше человеческого волоса, открывает большие возможности для будущих батарей. Но они всегда ломались при подзарядке. Это открытие использует золотые нанопроволоки в гелевом электролите, чтобы избежать этого. Фактически, эти батареи были проверены на перезарядку более 200 000 раз за три месяца и не показали никаких повреждений.

Твердотельные литий-ионные

Твердотельные батареи традиционно обеспечивают стабильность, но за счет передачи электролита.В статье, опубликованной учеными Toyota, рассказывается об их испытаниях твердотельной батареи, в которой используются сульфидные суперионные проводники. Все это означает превосходный аккумулятор.

В результате получился аккумулятор, способный работать на уровне суперконденсатора, полностью заряжаясь или разряжаясь всего за семь минут, что делает его идеальным для автомобилей. Поскольку он твердотельный, это также означает, что он намного стабильнее и безопаснее, чем существующие батареи. Твердотельный блок также должен работать при температуре от минус 30 до 100 градусов Цельсия.

Электролитные материалы по-прежнему создают проблемы, поэтому не ожидайте увидеть их в ближайшее время в автомобилях, но это шаг в правильном направлении к более безопасным и быстро заряжаемым аккумуляторам.

Графеновые батареи Grabat

Графеновые батареи потенциально могут быть одними из самых лучших среди имеющихся. Grabat разработал графеновые батареи, которые могут обеспечить электромобилям запас хода до 500 миль без подзарядки.

Graphenano, компания, стоящая за разработкой, заявляет, что аккумуляторы можно полностью зарядить всего за несколько минут и они могут заряжаться и разряжаться в 33 раза быстрее, чем литий-ионные.Разряд также важен для таких вещей, как автомобили, которым требуется огромное количество энергии для быстрого трогания с места.

Нет информации о том, используются ли аккумуляторы Grabat в настоящее время в каких-либо продуктах, но у компании есть аккумуляторы для автомобилей, дронов, мотоциклов и даже для дома.

Лазерные микроконденсаторы

Rice Univeristy

Ученые из Университета Райса совершили прорыв в создании микроконденсаторов. В настоящее время их производство дорогое, но используются лазеры, которые вскоре могут измениться.

При использовании лазеров для выжигания электродных рисунков на листах пластика затраты на производство и усилия значительно снижаются. В результате получается аккумулятор, который может заряжаться в 50 раз быстрее, чем нынешние аккумуляторы, и разряжаться даже медленнее, чем современные суперконденсаторы. Они даже прочные, способны работать после более чем 10 000 сгибаний во время испытаний.

Пенные аккумуляторы

Прието считает, что будущее аккумуляторов - за 3D. Компании удалось решить эту проблему с помощью своей батареи, в которой используется вспененная медь.

Это означает, что эти батареи будут не только более безопасными благодаря отсутствию горючего электролита, но также будут обеспечивать более длительный срок службы, более быструю зарядку, в пять раз более высокую плотность, будут дешевле в производстве и будут меньше, чем существующие предложения.

Prieto стремится в первую очередь помещать свои батареи в мелкие предметы, например, в носимые устройства. Но в нем говорится, что батареи можно масштабировать, чтобы мы могли видеть их в телефонах и, возможно, даже в автомобилях в будущем.

Carphone Warehouse

Складной аккумулятор похож на бумагу, но прочный

Jenax J.Аккумулятор Flex был разработан, чтобы сделать гибкие гаджеты возможными. Батарея, похожая на бумагу, складывается и является водонепроницаемой, что означает, что ее можно интегрировать в одежду и носимые устройства.

Батарея уже создана и даже прошла испытания на безопасность, в том числе ее сложили более 200 000 раз без потери производительности.

Ник Билтон / The New York Times

uBeam по воздуху зарядка

uBeam использует ультразвук для передачи электричества. Энергия преобразуется в звуковые волны, неслышимые для людей и животных, которые передаются, а затем преобразуются обратно в энергию при достижении устройства.

С концепцией uBeam наткнулась 25-летняя выпускница астробиологии Мередит Перри. Она основала компанию, которая позволит заряжать гаджеты по воздуху с помощью пластины толщиной 5 мм. Эти передатчики можно прикрепить к стенам или сделать предметами декоративного искусства, чтобы передавать энергию на смартфоны и ноутбуки. Гаджетам просто нужен тонкий приемник, чтобы принимать заряд.

StoreDot

StoreDot заряжает мобильные телефоны за 30 секунд

StoreDot, стартап, созданный на базе кафедры нанотехнологий Тель-Авивского университета, разработал зарядное устройство StoreDot.Он работает с современными смартфонами и использует биологические полупроводники, изготовленные из природных органических соединений, известных как пептиды - короткие цепочки аминокислот, которые являются строительными блоками белков.

В результате получилось зарядное устройство, способное заряжать смартфон за 60 секунд. Батарея состоит из «негорючих органических соединений, заключенных в многослойную защитную структуру, предотвращающую перенапряжение и нагрев», поэтому проблем с ее взрывом быть не должно.

Компания также объявила о планах создать аккумулятор для электромобилей, который заряжается за пять минут и предлагает запас хода до 300 миль.

Пока неизвестно, когда аккумуляторы StoreDot будут доступны в глобальном масштабе - мы ожидали, что они появятся в 2017 году, - но когда они появятся, мы ожидаем, что они станут невероятно популярными.

Pocket-lint

Прозрачное солнечное зарядное устройство

Alcatel продемонстрировал мобильный телефон с прозрачной солнечной панелью над экраном, которая позволит пользователям заряжать свой телефон, просто поместив его на солнце.

Хотя вряд ли он появится в продаже в течение некоторого времени, компания надеется, что он каким-то образом решит повседневные проблемы, связанные с постоянным отсутствием заряда батареи.Телефон будет работать как с прямыми солнечными лучами, так и со стандартным освещением, как и обычные солнечные батареи.

Phienergy

Алюминиево-воздушная батарея обеспечивает пробег на 1100 миль без подзарядки

Автомобиль сумел проехать 1100 миль на одном заряде аккумулятора. Секрет этого супердиапазона заключается в технологии батареи, называемой «алюминий-воздух», которая использует кислород воздуха для заполнения своего катода. Это делает его намного легче, чем заполненные жидкостью литий-ионные аккумуляторы, что дает автомобилю гораздо больший запас хода.

Бристольская робототехническая лаборатория

Батареи с питанием от мочи

Фонд Билла Гейтса финансирует дальнейшие исследования Бристольской робототехнической лаборатории, которая обнаружила батареи, которые могут питаться от мочи. Этого достаточно, чтобы зарядить смартфон, который ученые уже продемонстрировали. Но как это работает?

Используя микробный топливный элемент, микроорганизмы собирают мочу, расщепляют ее и выделяют электричество.

Звук работает

Исследователи из Великобритании создали телефон, который может заряжаться, используя окружающий звук в атмосфере вокруг него.

Смартфон построен по принципу пьезоэлектрического эффекта. Были созданы наногенераторы, которые собирают окружающий шум и преобразуют его в электрический ток.

Наностержни даже реагируют на человеческий голос, а это означает, что болтливые мобильные пользователи могут подключать свой собственный телефон во время разговора.

Двойная угольная батарея Ryden заряжается в 20 раз быстрее.

Power Japan Plus уже анонсировала новую технологию аккумуляторов под названием Ryden dual carbon. Он не только прослужит дольше и будет заряжаться быстрее, чем литиевые, но его можно будет производить на тех же заводах, где производятся литиевые батареи.

В аккумуляторах используются углеродные материалы, что означает, что они более устойчивы и экологически безопасны, чем существующие альтернативы. Это также означает, что батареи будут заряжаться в двадцать раз быстрее, чем литий-ионные. Они также будут более долговечными, с возможностью выдерживать до 3000 циклов зарядки, а также более безопасными с меньшей вероятностью возгорания или взрыва.

Натрий-ионные аккумуляторы

Ученые из Японии работают над новыми типами аккумуляторов, которые не нуждаются в литии, таких как аккумулятор вашего смартфона.В этих новых батареях будет использоваться натрий, один из самых распространенных материалов на планете, а не редкий литий, и они будут в семь раз эффективнее обычных батарей.

Исследования натриево-ионных аккумуляторов ведутся с восьмидесятых годов в попытке найти более дешевую альтернативу литию. Используя соль, шестой по распространенности элемент на планете, можно сделать батареи намного дешевле. Ожидается, что в ближайшие 5-10 лет начнется коммерциализация аккумуляторов для смартфонов, автомобилей и других устройств.

Upp

Зарядное устройство для водородных топливных элементов Upp

Переносное зарядное устройство для водородных топливных элементов Upp уже доступно. Он использует водород для питания вашего телефона, чтобы вы не мешали и оставались экологически чистыми.

Одна водородная ячейка обеспечит пять полных зарядов мобильного телефона (емкость 25 Втч на ячейку). И единственный побочный продукт - водяной пар. Разъем USB типа A означает, что он будет заряжать большинство USB-устройств с выходом 5 В, 5 Вт, 1000 мА.

Батареи со встроенным огнетушителем

Литий-ионные батареи нередко перегреваются, загораются и даже могут взорваться.Аккумулятор в Samsung Galaxy Note 7 - яркий тому пример. Исследователи Стэнфордского университета придумали литий-ионные батареи со встроенными огнетушителями.

В батарее есть компонент, называемый трифенилфосфатом, который обычно используется в качестве антипирена в электронике, добавленный к пластиковым волокнам, чтобы помочь разделить положительный и отрицательный электроды. Если температура батареи поднимается выше 150 градусов C, пластмассовые волокна плавятся и выделяется трифенилфосфат.Исследования показывают, что этот новый метод может предотвратить возгорание аккумуляторов за 0,4 секунды.

Майк Циммерман

Батареи, защищенные от взрыва

Литий-ионные батареи имеют довольно летучий слой пористого материала жидкого электролита, расположенный между анодным и катодным слоями. Майк Циммерман, исследователь из Университета Тафтса в Массачусетсе, разработал батарею, которая имеет вдвое большую емкость, чем литий-ионные, но без присущих ей опасностей.

Батарея Циммермана невероятно тонкая, немного толще, чем две кредитные карты, и заменяет жидкость электролита пластиковой пленкой, которая имеет аналогичные свойства.Он может противостоять прокалыванию, измельчению и нагреванию, так как он негорючий. Еще предстоит провести много исследований, прежде чем технология сможет выйти на рынок, но хорошо знать, что существуют более безопасные варианты.

Аккумуляторы Liquid Flow

Гарвардские ученые разработали аккумулятор, который накапливает свою энергию в органических молекулах, растворенных в воде с нейтральным pH. Исследователи говорят, что этот новый метод позволит батарее Flow работать исключительно долгое время по сравнению с нынешними литий-ионными батареями.

Маловероятно, что мы увидим эту технологию в смартфонах и т.п., поскольку жидкий раствор, связанный с батареями Flow, хранится в больших резервуарах, чем больше, тем лучше. Считается, что они могут быть идеальным способом хранения энергии, создаваемой решениями в области возобновляемых источников энергии, таких как ветер и солнце.

Действительно, исследование Стэнфордского университета использовало жидкий металл в проточной батарее с потенциально отличными результатами, заявляя, что напряжение вдвое выше, чем у обычных проточных батарей. Команда предположила, что это может быть отличным способом хранения непостоянных источников энергии, таких как ветер или солнце, для быстрой передачи в сеть по запросу.

IBM и ETH Zurich и разработали жидкостную проточную батарею гораздо меньшего размера, которая потенциально может быть использована в мобильных устройствах. Эта новая батарея утверждает, что может не только обеспечивать питание компонентов, но и одновременно охлаждать их. Обе компании обнаружили две жидкости, которые подходят для этой задачи, и будут использоваться в системе, способной производить 1,4 Вт мощности на квадратный сантиметр, при этом 1 Вт мощности зарезервирован для питания батареи.

Zap & Go Карбон-ионный аккумулятор

Оксфордская компания ZapGo разработала и произвела первую угольно-ионную аккумуляторную батарею, которая уже готова к использованию потребителями.Углеродно-ионный аккумулятор сочетает в себе сверхбыструю зарядку суперконденсатора с характеристиками литий-ионного аккумулятора, при этом полностью пригодный для вторичной переработки.

Компания предлагает зарядное устройство powerbank, которое полностью заряжается за пять минут, а затем полностью заряжает смартфон за два часа.

Цинково-воздушные батареи

Ученые из Сиднейского университета считают, что они придумали способ производства воздушно-цинковых батарей, который намного дешевле, чем существующие методы.Воздушно-цинковые батареи можно считать более совершенными, чем литий-ионные, поскольку они не загораются. Единственная проблема в том, что они полагаются на дорогие компоненты в работе.

Sydney Uni удалось создать воздушно-цинковую батарею без необходимости использования дорогих компонентов, а скорее с некоторыми более дешевыми альтернативами. Возможно, появятся более безопасные и дешевые батареи!

Умная одежда

Исследователи из Университета Суррея разрабатывают способ использования одежды в качестве источника энергии.Батарея называется трибоэлектрическим наногенератором (TENG), которая преобразует движение в накопленную энергию. Накопленное электричество затем можно использовать для питания мобильных телефонов или устройств, таких как фитнес-трекеры Fitbit.

Эта технология может быть применена не только к одежде, она может быть интегрирована в тротуар, поэтому, когда люди постоянно ходят по ней, она может накапливать электричество, которое затем может использоваться для питания ламп или в шинах автомобиля, чтобы может привести машину в действие.

Растягиваемые батареи

Инженеры Калифорнийского университета в Сан-Диего разработали растяжимый биотопливный элемент, который может вырабатывать электричество из пота.Говорят, что вырабатываемой энергии достаточно для питания светодиодов и радиомодулей Bluetooth, а это означает, что однажды он сможет питать носимые устройства, такие как умные часы и фитнес-трекеры.

Графеновый аккумулятор Samsung

Samsung удалось разработать «графеновые шары», которые способны увеличивать емкость существующих литий-ионных аккумуляторов на 45 процентов и заряжаться в пять раз быстрее, чем существующие аккумуляторы. Чтобы представить это в контексте, Samsung заявляет, что его новый аккумулятор на основе графена может быть полностью заряжен за 12 минут, по сравнению с примерно часом для текущего устройства.

Samsung также заявляет, что его можно использовать не только в смартфонах, но и в электромобилях, поскольку он выдерживает температуру до 60 градусов Цельсия.

Более безопасная и быстрая зарядка существующих литий-ионных аккумуляторов

Ученые из WMG из Университета Уорика разработали новую технологию, которая позволяет заряжать существующие литий-ионные аккумуляторы до пяти раз быстрее, чем рекомендуемые пределы. Технология постоянно измеряет температуру батареи намного точнее, чем существующие методы.

Ученые обнаружили, что нынешние батареи действительно могут выходить за пределы рекомендуемых пределов, не влияя на производительность или перегрев. Может быть, нам вообще не нужны другие упомянутые новые батареи!

Написано Крисом Холлом.

.

Новый метод увеличения плотности энергии в литиевых батареях

Трехслойный электрод из графита / ПММА / Li до (слева) и после (справа) замачивания в электролите батареи в течение 24 часов. Перед погружением в электролит трехслойный электрод стабилен на воздухе. После замачивания литий вступает в реакцию с графитом, и цвет становится золотистым. Предоставлено: Юань Ян, Columbia Engineering.

Юань Ян, доцент кафедры материаловедения и инженерии Columbia Engineering, разработал новый метод увеличения плотности энергии литиевых (Li-ion) батарей.Он построил трехслойную структуру, которая устойчива даже в окружающем воздухе, что делает батарею более долговечной и более дешевой в производстве. Работа, которая может улучшить удельную энергию литиевых батарей на 10-30%, опубликована сегодня в Интернете в Nano Letters .

«Когда литиевые батареи заряжаются в первый раз, они теряют от 5 до 20% энергии за этот первый цикл», - говорит Ян.«Благодаря нашему дизайну мы смогли вернуть эту потерю, и мы думаем, что наш метод имеет большой потенциал для увеличения времени работы батарей для портативной электроники и электрических транспортных средств».

Во время первой зарядки литиевой батареи после ее изготовления часть жидкого электролита превращается в твердую фазу и наносится на отрицательный электрод батареи. Этот процесс, обычно выполняемый до отправки аккумуляторов с завода, является необратимым и снижает запас энергии в аккумуляторе.Потери составляют примерно 10% для современных отрицательных электродов, но могут достигать 20-30% для отрицательных электродов следующего поколения с высокой емкостью, таких как кремний, поскольку эти материалы имеют большое объемное расширение и высокую площадь поверхности. Большие начальные потери уменьшают достижимую емкость в полной ячейке и, таким образом, ставят под угрозу выигрыш в плотности энергии и сроке службы этих наноструктурированных электродов.

Традиционный подход к компенсации этих потерь заключался в помещении в электрод определенных материалов, богатых литием.Однако большинство этих материалов нестабильны в окружающем воздухе. Производство аккумуляторов в сухом воздухе, в котором совсем нет влаги, - намного более дорогой процесс, чем производство на воздухе. Ян разработал новую трехслойную структуру электрода для изготовления анодов литиированных батарей в окружающем воздухе. В этих электродах он защитил литий слоем полимера ПММА, чтобы предотвратить реакцию лития с воздухом и влагой, а затем покрыл ПММА такими активными материалами, как искусственный графит или наночастицы кремния.Затем слой ПММА растворялся в электролите батареи, подвергая литий воздействию электродных материалов. «Таким образом, мы смогли избежать любого контакта с воздухом между нестабильным литием и литиированным электродом», - объясняет Ян, «поэтому трехслойный электрод может работать в окружающем воздухе. Это могло бы стать привлекательным шагом вперед на пути к массовому производству литиированных батарей. электроды ".

Иллюстрация, показывающая процедуру изготовления трехслойного электрода.ПММА используется для защиты лития и обеспечения устойчивости трехслойного электрода в окружающем воздухе. ПММА растворяется в электролите аккумуляторной батареи и контактирует графит с литием, чтобы компенсировать потери из-за восстановления электролита. Предоставлено: Юань Ян, Columbia Engineering.

Метод Янга снизил потери в современных графитовых электродах с 8% до 0,3%, а в кремниевых электродах с 13% до -15%. Цифра -15% указывает на то, что лития было больше, чем необходимо, и «лишний» литий можно использовать для дальнейшего увеличения срока службы аккумуляторов, поскольку избыток может компенсировать потерю емкости в последующих циклах.Поскольку плотность энергии или емкость литий-ионных аккумуляторов увеличивалась на 5-7% ежегодно в течение последних 25 лет, результаты Янга указывают на возможное решение для увеличения емкости литий-ионных аккумуляторов. Его группа сейчас пытается уменьшить толщину полимерного покрытия, чтобы оно занимало меньший объем в литиевой батарее, и расширить его технику.

«Эта трехслойная структура электрода действительно представляет собой продуманную конструкцию, которая позволяет обрабатывать литий-металлсодержащие электроды в условиях окружающей среды», - отмечает Хайлианг Ван, доцент химии Йельского университета, который не принимал участия в исследовании.«Первоначальная кулоновская эффективность электродов - большая проблема для индустрии литий-ионных аккумуляторов, и этот эффективный и простой в использовании метод компенсации необратимых потерь ионов лития вызовет интерес».


Литий-ионные батареи: емкость может быть увеличена в шесть раз
Дополнительная информация: Зеюан Цао и др., Стабильный литий-анод, устойчивый к атмосферному воздуху, для литий-ионных аккумуляторов с высокой плотностью энергии, Nano Letters (2016).DOI: 10.1021 / acs.nanolett.6b03655 Предоставлено Школа инженерии и прикладных наук Колумбийского университета

Ссылка : Новый метод увеличивает плотность энергии в литиевых батареях (2016, 24 октября) получено 18 ноября 2020 с https: // физ.org / news / 2016-10-method-energy-density-lithium -atteries.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

.

Преимущества и ограничения различных типов батарей

Нас часто озадачивают объявления о новых батареях, которые, как говорят, обладают очень высокой плотностью энергии, обеспечивают 1000 циклов заряда / разряда и тонкие как бумага. Они настоящие? Возможно - но не в одном аккумуляторе. Хотя один тип батарей может быть рассчитан на небольшой размер и длительную работу, этот аккумулятор не прослужит долго и преждевременно изнашивается. Другой аккумулятор может быть рассчитан на долгий срок службы, но его размер большой и громоздкий.Третья батарея может обеспечить все желаемые качества, но цена будет слишком высокой для коммерческого использования.

Производители аккумуляторов хорошо осведомлены о потребностях клиентов и отреагировали, предложив пакеты, которые лучше всего подходят для конкретных приложений. Индустрия мобильных телефонов - пример умной адаптации. Акцент делается на небольшие размеры, высокую удельную энергию и невысокую цену. На втором месте - долголетие.

Надпись NiMH на батарейном блоке не гарантирует автоматически высокую плотность энергии.Призматический никель-металлогидридный аккумулятор для мобильного телефона, например, имеет тонкую форму. Такой пакет обеспечивает плотность энергии около 60 Втч / кг, а количество циклов составляет около 300. Для сравнения, цилиндрический NiMH обеспечивает плотность энергии 80 Втч / кг и выше. Тем не менее, количество циклов этой батареи от умеренного до низкого. NiMH аккумуляторы повышенной прочности, выдерживающие 1000 разрядов, обычно упаковываются в громоздкие цилиндрические элементы. Плотность энергии этих элементов составляет скромные 70 Втч / кг.

Компромиссы существуют и в отношении литиевых батарей.Литий-ионные блоки производятся для оборонных приложений, которые намного превышают плотность энергии коммерческого эквивалента. К сожалению, эти литий-ионные батареи сверхвысокой емкости считаются небезопасными в руках населения, а высокая цена делает их недоступными для коммерческого рынка.

В этой статье мы рассмотрим преимущества и ограничения серийного аккумулятора. Так называемые чудо-батареи, которые просто живут в контролируемой среде, исключаются. Мы тщательно изучаем батареи не только с точки зрения плотности энергии, но и с точки зрения долговечности, характеристик нагрузки, требований к техническому обслуживанию, саморазряда и эксплуатационных расходов.Поскольку никель-кадмиевые батареи остаются стандартом, с которым сравниваются другие батареи, мы сравниваем альтернативные химические составы с этим классическим типом батарей.

Никель-кадмий (NiCd) - зрелый и хорошо изученный, но с относительно низкой плотностью энергии. NiCd используется там, где важны долгий срок службы, высокая скорость разряда и экономичная цена. Основные области применения - двусторонняя радиосвязь, биомедицинское оборудование, профессиональные видеокамеры и электроинструменты. NiCd содержит токсичные металлы и не наносит вреда окружающей среде.

Никель-металлогидрид (NiMH) - имеет более высокую плотность энергии по сравнению с NiCd за счет сокращения срока службы. NiMH не содержит токсичных металлов. Приложения включают мобильные телефоны и портативные компьютеры.

Свинцово-кислотный - наиболее экономичный для мощных систем, где вес не имеет значения. Свинцово-кислотные батареи являются предпочтительным выбором для больничного оборудования, инвалидных колясок, аварийного освещения и систем ИБП.

Lithium Ion (Li ‑ ion) - самая быстрорастущая аккумуляторная система.Литий-ионный используется там, где первостепенное значение имеют высокая плотность энергии и легкий вес. Технология хрупкая, и для обеспечения безопасности требуется схема защиты. Приложения включают портативные компьютеры и сотовые телефоны.

Литий-ионный полимер (литий-ионный полимер) - предлагает атрибуты литий-ионного аккумулятора в сверхтонкой геометрии и упрощенной упаковке. Основное применение - мобильные телефоны.

На рисунке 1 сравниваются характеристики шести наиболее часто используемых систем аккумуляторных батарей с точки зрения плотности энергии, срока службы, требований к упражнениям и стоимости.Цифры основаны на средних номиналах имеющихся в продаже батарей на момент публикации.

никель-кадмиевый NiMH Свинцово-кислотный Литий-ионный Литий-ионный полимерный Многоразовые
Щелочные
Гравиметрическая плотность энергии (Втч / кг) 45-80 60-120 30-50 110-160 100–130 80 (начальная)
.

Смотрите также