Принцип действия и устройство генератора постоянного тока


Генератор постоянного тока: устройство, принцип работы, классификация

На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinwt; e2 = -Blvsinwt; , где Bмагнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, tвремя, wt – угол, под которым рамка пересекает магнитный поток.  

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinwt, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Рис. 4. Двигатель постоянного тока

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные  показатели при оптимальных оборотах вращения якоря.

Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5).  Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6).  Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

ЭДС

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

КПД

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Видео по теме

Список использованной литературы

  • Вольдек А. И., Попов В. В. «Электрические машины. Введение в электромеханику. Машины постоянного тока и трансформаторы» 2008
  • О.А.Косарева «Шпаргалка по общей электротехники и электроники»
  • Китаев В. Е., Корхов Ю. М., Свирин В. К. «Электрические машины» Часть 1. Машины постоянного тока. 1978
  • Данилов И.А., Лотоцкий К.В. «Электрические машины» 1972

Генератор постоянного тока – принцип действия, устройство, как работает


Электрика » Электроснабжение » Электрогенераторы » Постоянного тока

Генератор постоянного тока предназначен для преобразования кинетической энергии в электрическую. Используется в качестве источника электроэнергии в тепловозах, автомобилях, промышленных установках и т.д.

Представляет собой обратимую электрическую машину. В зависимости от схемы подключения может работать как генератор или как электродвигатель.

Принцип действия генератора постоянного тока основан на физическом явлении электромагнитной индукции. Заключается в том, что если проводник передвигается в магнитном поле, в нем возникает электрический ток. Такой ток называется индукционным.

Важным условием является то, что проводник должен пересекать поле, а не двигаться вдоль него.

Схематично это явление можно описать следующим образом. Если проводник, например, медную проволоку в виде рамки поместить между двумя полюсами подковообразного магнита, он будет находиться в постоянном магнитном поле.

Затем начнем вращать эту рамку. В процессе вращения она будет пересекать магнитный поток. Вследствие этого, внутри проволоки индуцируется электродвижущая сила э.д.с.

Если концы этой рамки соединить, то под воздействием э.д.с., потечет индукционный ток. Если включить в эту цепь амперметр, он покажет наличие в ней тока. Это и есть самый простой макет генератора.

Для того, чтобы подключить рамку к электрической цепи, ее крепят к полукольцам. Две щетки контактируют с вращающимися полукольцами поочередно, и через них индукционный ток поступает далее в электрическую цепь. Полукольца устанавливают на оси, вокруг которой вращается рамка. Это упрощенная схема коллектора.

Когда рамка переходит через горизонтальное положение (нейтраль), щетки одновременно переключаются с одного полукольца на второе. В этот момент стороны рамки магнитных силовых линий не пересекают. В таком положении э.д.с. и, соответственно, ток равны 0. Благодаря этому переключение щеток не сопровождается искрением.

На величину электродвижущей силы влияют следующие факторы:

  • длина проволоки;
  • величина индукции магнитного поля;
  • частота вращения.

Величина э.д.с. (Е) меняется по синусоидальной траектории, с пиками при прохождении рамкой вертикальных положений. В эти моменты она перпендикулярно пересекает максимум силовых линий. Нулевые значения отмечаются при прохождении нейтрали. После ее пересечения э.д.с. меняет свое направление.

В свою очередь, коллектор, чередуя каждые пол оборота полукольца на щетках, выпрямляет переменную э.д.с. На выходе получается пульсирующий, в виде выпрямленной синусоиды, постоянный ток.

КАК НА ВЫХОДЕ ПОЛУЧАЕТСЯ ПОСТОЯННЫЙ ТОК

Для того, чтобы можно было пользоваться генератором, как источником энергии, ток нужно сгладить. Если увеличить количество рамок до двух и расположить их перпендикулярно друг другу. Тогда пиковые значения Е и, соответственно, тока будут возникать уже каждые четверть оборота.

Если их соединить последовательно, индуцируемый ток будет суммироваться. А его выходная характеристика будет иметь вид двух, смещенных между собой на четверть периода выпрямленных синусоид. Пульсация значительно уменьшится.

Если количество последовательных рамок еще увеличивать, тогда значение тока будет все больше приближаться к идеальной прямой. Кроме того, величина электродвижущей силы напрямую зависит от длины проводника. Поэтому количество рамок делают большим, а их совокупность и составляет обмотку вращающейся части генератора — якоря.

Для последовательного соединения витков обмотки, конец предыдущего нужно соединить с началом следующего. Делают это на полукольцах или, как их называют, пластинах. Их количество будет равняться количеству витков.

Другим фактором, влияющим на величину Е, является сила магнитного поля. Индукция магнитного потока обычного магнита слишком маленькая, а потери в среде между двумя полюсами наоборот очень большие.

Для решения первой проблемы вместо постоянного магнита используют гораздо более сильный электромагнит. Для решения второй проблемы сердечник якоря выполняют из стали. Также уменьшают до самого минимума зазор между якорем генератора и полюсами электромагнита.

Ток, протекающий в якоре, образуют своего рода электромагнит, и создает свое магнитное поле. Это явление называется реакция якоря. В нем также возникает реактивная э.д.с. Вместе они искажают магнитное поле. Чтобы это скомпенсировать, устанавливаются добавочные полюса. Они включаются в цепь якоря и полностью перекрывают это негативное воздействие.

По источнику тока возбуждения генераторы бывают:

  • с независимым возбуждением;
  • с самовозбуждением.

Необходимый для работы генератора магнитный поток создается благодаря току, проходящему через обмотки главных полюсов. Этот ток называется током возбуждения. При независимом возбуждении обмотка питается от аккумулятора или другого источника питания. При самовозбуждении питается током якоря.

Благодаря тому, что сердечники полюсов обладают остаточным магнетизмом, они создают небольшой магнитный поток. Если якорь начинает вращаться, этого потока достаточно для появления в витках якоря небольшого индукционного тока.

Этот ток, попадая в обмотку возбуждения полюсов, усиливает рабочий магнитный поток. Это приводит к увеличению тока в якоре и происходит цепная реакция. Таким образом, генератор быстро выходит на расчетную мощность.

По схеме подключения обмотки якоря к обмотке возбуждения генераторы с самовозбуждением делятся на три типа:

  • с параллельным возбуждением;
  • с последовательным возбуждением;
  • со смешанным возбуждением.

Схема возбуждения влияет на характеристики генератора и особенности его применения. Основным его параметром является внешняя характеристика, выражающая зависимость напряжения на выходе от тока нагрузки при заданной частоте вращения и параметрах возбуждения. Также к основным характеристикам относится мощность и КПД, который достигает 90-95%.

УСТРОЙСТВО ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА

Генератор состоит из двух частей:

  • подвижная вращающаяся часть якорь;
  • неподвижная – статор.

Статор состоит из станины, магнитных полюсов, подшипникового щита с подшипниками. Станина — это несущая часть генератора, на которой размещены все его части. Внутри установлены полюсы с сердечниками и обмотками возбуждения. Изготавливается из ферромагнитных материалов.

Ротор или якорь состоит из сердечника, вала, коллектора и вентилятора. В качестве опоры для якоря используются подшипники, установленные на боковых подшипниковых щитах статора.

Преимущества и область применения.

Генераторы постоянного тока обладают следующими достоинствами:

  • простота конструкции, компактность;
  • надежность;
  • экономичность;
  • обратимость, то есть возможность использования в качестве электродвигателя;
  • практически линейная внешняя характеристика.

Недостатки:

  • высокая стоимость;
  • ограниченный срок службы щеточно-коллекторного узла.

Используются в различных отраслях производства, в строительстве, в промышленных установках, сварочном оборудовании, в машиностроении, на предприятиях металлургической промышленности, в автомобильном, железнодорожном, воздушном и морском, транспорте.

  *  *  *


© 2014-2020 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

схема, как устроен и как работает, преимущества и недостатки

Когда-то генераторы постоянного тока, преобразующие механическую энергию в электрическую, были единственными источниками электроэнергии. На сегодня чаще всего используются надежные трехфазные преобразователи переменного тока. Но в некоторых отраслях постоянный ток был регулярно востребован, поэтому устройства для выработки последнего неизменно совершенствовались.

Как работает

Функционирование генератора основывается на свойствах, которые следуют из известного закона электромагнитной индукции. Когда замкнутый контур разместить между полюсами магнита (постоянного), то в условиях вращения он будет проходить через магнитный поток. Во время перехода вырабатывается электродвижущая сила, возрастающая при приближении к полюсу. В случае, если присоединить нагрузку, то образуется поток тока. Когда витки рамки будут выходить из области воздействия магнита, то ЭДС будет уменьшаться и достигнет нуля при горизонтальном положении рамки. При дальнейшем вращении противолежащие контурные части изменят магнитную полярность.

Альтернатор постоянного тока

Значения ЭДС в активных обмотках контура вычисляются по формулах: е1= В I v sin wt, е2= — В I v sin wt, где I — длинна одной стороны рамки, В — магнитная индукция, v — скорость вращения (линейная) контура, t — время, wt — угол пересечения магнитного потока рамкой.

Направление тока меняется в период смены полюсов. Поскольку вращение коллектора происходит одновременно с рамой, то электроток на нагрузке имеет одинаковое направление. Такая схема лежит в основе выработки постоянного электричества. Суммарная ЭДС будет иметь следующий вид: е= 2В I v sin wt.

Принцип действия генератора

Такой ток почти непригоден для применения, поскольку присутствуют пульсации ЭДС. Последние надо уменьшать к допустимому уровню. Для этой цели применяют много магнитных полюсов, рамки заменяют якорями, у которых намного больше обмоток и коллекторов. К тому же, соединение обмоток выполняется разными методами.

Якорь

Ротор производится из стали. В пазы на сердечниках укладываются витки провода, которые составляют рабочую обмотку якоря. Проводники соединяют последовательно. Они образуют секции, создающие замкнутую цепь.

Интересно! Для процесса генерации неважно: вращаются обмотки контура или магнит. По этой причине роторы для маломощных альтернаторов изготавливают из постоянных магнитов, а переменный ток выпрямляют при помощи диодных мостов или иными схемами.

Узнать, из чего состоит генератор постоянного тока, поможет картинка 4.

Устройство машины постоянного тока

Установка состоит из главных узлов:

  • неподвижная часть — главные и дополнительные полюса, станина;
  • вращающаяся часть (якорь) — стальной сердечник, коллектор.

В процессе работы установки ток проводится сквозь обмотку и образуется магнитный поток полюсов. Специальные неподвижные щетки (из сплава графита) способствуют объединению обеих частей генератора в единую цепь.

Устройство и принцип действия генератора постоянного тока за долгий период применения остались прежними, несмотря на некоторые совершенствования.

Классификация

Существуют генераторы постоянного тока с независимым возбуждением обмоток, с самовозбуждением. Последние модели используют электричество, которое ими же вырабатывается. По способу объединения обмоток якорей альтернаторы делят на устройства с возбуждением следующих типов:

  • смешанным;
  • параллельным;
  • последовательным.

Схема генератора постоянного тока представлена на картинке 5.

Схемы альтернатора 

С параллельным возбуждением

Чтобы электроприборы работали в нормальном режиме, необходимо стабильное напряжение, которое не зависит от изменений в общей нагрузке. Эта проблема решается методом настройки параметров возбуждения. В таких генераторах катушка подключена (через реостат) параллельно обмотке якоря. Реостат может замыкают обмотку. В противном случае при разъединении цепи возбуждения внезапно повысится ЭДС самоиндукции, что может повредить изоляционный материал. В состоянии непродолжительного замыкания энергия превращается в тепловую, чем предотвращается разрушение устройства.

Электромашины с возбуждением такого вида не требуют внешнего источника питания. Самовозбуждение обмоток происходит под действием остаточного магнетизма в сердечнике магнита. Последние, для улучшения описанного процесса, производят из стали. Самовозбуждение длится до тех пор, пока ток не станет максимальным, а электродвижущая сила не покажет номинальное значение.

Преимущество вышеописанных электрогенераторов в том, что на них почти не влияют электротоки при коротком замыкании.

С независимым возбуждением

Источниками питания для обмоток нередко стают аккумуляторы или же иные устройства. В машинах с малой мощностью применяются постоянные магниты, обеспечивающие присутствие главного магнитного потока. На валу альтернатора располагают микрогенератор (возбудитель), который вырабатывает электроток для возбуждения якорных обмоток. Для этой цели необходимо от 1 до 3 % номинального тока якоря. Изменение электродвижущей силы выполняется регулирующим реостатом.

Достоинство: на возбуждающий ток не имеет воздействия напряжение на зажимах.

С последовательным возбуждением

Последовательными обмотками вырабатывается ток, который равняется электротоку альтернатора. В случае холостого хода отсутствует нагрузка, поэтому возбуждение нулевое. Это обозначает, что регулировочные свойства не существуют.

В агрегате с последовательным возбуждением почти нет тока, если ротор вращается на холостых оборотах. Чтобы запустить возбуждение, требуется подключение нагрузки к зажимам устройства. Явная связанность напряжения с нагрузкой считается огромным минусом последовательных обмоток. Подобные агрегаты используются лишь для питания электрических приборов, у которых нагрузка постоянная.

Со смешанным возбуждением

Самые лучшие свойства собраны в конструкции агрегатов со смешанным возбуждением. Особенность устройств в том, что они состоят из двух катушек:

  • основная — подключена параллельным способом к обмоткам якоря;
  • вспомогательная — подключена последовательным способом.

В цепи основной присутствует реостат, который регулирует ток возбуждения. Процедура самовозбуждения генератора со смешанным типом такая же, как у агрегата с параллельными обмотками (в самовозбуждении не принимает участия последовательная обмотка, так как отсутствует исходный ток). А свойства холостого хода идентичны характеристикам генератору с параллельной обмоткой. Такие особенности разрешают настраивать напряжение на зажимах устройства.

Технические параметры

Работа генератора определяется зависимостью между основными величинами, которые являются его главными характеристиками:

  • отношения между величинами на холостом ходу;
  • внешние параметры;
  • регулировочные значения.

Внешняя характеристика генератора постоянного тока крайне важна, так как раскрывает взаимосвязь напряжения и нагрузки. Она отображена на графике. Согласно последнего наблюдается незначительное уменьшение напряжения, но оно почти не зависит от нагрузочного тока (если сохраняется скорость оборотов двигателя).

Внешняя характеристика ГПТ

В устройствах с параллельным возбуждением больше выражено влияние нагрузки на напряжение. Это объясняется уменьшением тока в обмотках. Чем выше ток нагрузки, тем быстрее будет уменьшаться напряжение на зажимах агрегата.

Свойства ГПТ с параллельным возбуждением

Если увеличить величину тока при последовательном возбуждении, то вырастет ЭДС. Но напряжение не достигнет высокого значения электродвижущей силы, так как часть энергии уйдет на потери от вихревых токов.

Свойства ГПТ с последовательным возбуждением

При достижении напряжением максимального значения и одновременным увеличением нагрузки, первое начинает стремительно снижаться в то время, как кривая электродвижущей силы продолжает подниматься. Это считается большим недостатком, ограничивающим использование генератора такого типа.

В устройствах со смешанным возбуждением предвиденные встречные подключения обеих катушек. Конечная сила при однонаправленном подключении равняется сумме векторов намагничивающих сил, при встречном — их разнице.

При равномерном увеличении нагрузки напряжение на зажимах почти не меняется. Оно будет расти лишь тогда, если число проводов последовательной обмотки превышает число витков, которое соответствует номинальному возбуждению якоря.

Свойства ГПТ со смешанным возбуждением

Генераторы со встречным включением применяются в том случае, если нужно ограничить токи короткого замыкания. К примеру, при подсоединении аппаратов для сварки.

КПД

Важной характеристикой генератора считается его КПД — соотношение полезной и полной мощности: η = P 2 / P1. При холостом ходе такое отношение равно нулю (η=0). При номинальных нагрузках КПД достигнет максимального значения. Мощные агрегаты имеют коэффициент полезного действия около 90 %.

КПД

ЭДС

Электродвижущая сила (ее значение) пропорциональна магнитному потоку, числу проводников (активных) в обмотках, частоте вращения якоря. Если менять последние параметры, то можно легко управлять значением ЭДС. Последнее относится и к напряжению. Нужный результат достигается методом изменения частоты вращения якоря.

Мощность

Выделяют полезную и полную мощности устройства. При постоянной электродвижущей силе полная мощность находится в прямо пропорциональной зависимости от тока: P=EIa. Полезная, которая отдается в цепь, Р1=UI.

Реакция якоря

Если к альтернатору подключить внешнюю нагрузку, то электротоки его обмотки создадут магнитное поле. Тогда возникнет сопротивление полей якоря и статора. Поле будет самым сильным в тех местах, где ротор приближается к магнитным полюсам, очень слабым — в точках максимального удаления. Ротор чувствует магнитное насыщение стальных катушечных сердечников. Сила реакции напрямую зависит от насыщенности в проводах. В результате на пластинках коллекторов будет происходить искрение щеток.

Реакция ротора

Уменьшение реакции достигается при использовании восполняющих магнитных полюсов или передвижением щеток с линии оси.

Где используются

Еще совсем недавно генераторы постоянного тока устанавливались на транспорте для железных дорог. Но сейчас их вытесняют синхронные трехфазные устройства. Переменный ток синхронных агрегатов выпрямляют полупроводниковыми установками. Некоторые новые локомотивы используют асинхронные двигатели, которые работают на переменном токе.

Применение ГПТ

Такие же обстоятельства и с автогенераторами, которые постепенно замещают асинхронными устройствами с дальнейшим выпрямлением.

Сварочный генератор

Стоит заметить, что передвижное оборудование для сварки (имеющие автономное питание) обычно находится в паре с таким генератором. Отдельные отрасли промышленности продолжают применять мощные агрегаты описанного типа.

из чего состоит, типы, схема и назначение

Содержание статьи:

Генератор постоянного тока – это электротехническое оборудование, которое продуцирует напряжение постоянной величины. Устройство имеет довольно сложное техническое строение, которое можно назвать совершенством технической мысли.

Принцип действия

Генератор постоянного тока

Каждый проводник оснащен магнитом, к концам которого подключена нагрузка. При ее подключении по ним непрерывно протекает переменный ток. Природа его происхождения объясняется тем, что во время работы полюса магнита непрерывно меняются местами. На этом принципе основывается работа генератора переменного тока.

Чтобы ток не изменял своего направления, требуется успевать соединять точки коммутации нагрузки со скоростью аналогичной скорости вращения магнита. Справиться с поставленной задачей может только контроллер – небольшое электротехническое устройство, которое состоит из нескольких токопроводящих секторов, разделенных диэлектрическими пластинами. Оно фиксируется на якоре устройства и вращается с ним синхронно.

Электрическая энергия с якоря удаляется с помощью щеток. Используются чаще всего кусочки графита, обладающие высокой электропроводностью и низким коэффициентом трения.

Все эти процессы способствуют образованию на выходе электротехнической установки пульсирующего напряжения одной величины. Для сглаживания этой пульсации применяется несколько якорных обмоток. Чем их больше установлено, тем меньше будут броски напряжения на выходе.

Характеристики и строение

Как и абсолютное большинство других электрических агрегатов, генератор постоянного тока в свой состав включает статор и якорь.

Якорь изготавливают из стальных пластин с небольшими углублениями, в них помещаются обмотки. Их концы обязательно коммутируют с коллектором, который изготовлен из медных пластин, разделенных диэлектриками. По окончании сборки вал, якорь с обмотками и коллектор становятся одним целым.

Статор выполняет не только свою непосредственную функцию, но и является корпусом, к внутренней поверхности которого крепятся электрические магниты и постоянные. Предпочтительнее первый вариант, их сердечники могут быть набраны из металлических пластин или отлиты вместе с корпусом. Еще на корпусе предусмотрены специальные отверстия для крепления токосъемных щеток.

Количество графитов будет изменяться в зависимости от количества полюсов магнитов, которыми оснащен статор. Количество щеток равно количеству пар полюсов.

Электродвижущая сила

Электродвижущая сила генератора постоянного тока или ЭДС представляет собой величину, которая прямо пропорциональна потоку магнитов, количеству активных проводников и частоте вращения якоря. При уменьшении или увеличении этих показателей удается управлять величиной электродвижущей силы и напряжением. Установить требуемые параметры можно с помощью регулировки частоты вращения якоря.

Мощность оборудования и КПД

Мощность генератора постоянного тока встречается как полная, так и полезная. При постоянной электродвижущей силе генератора полная мощность пропорциональна силе тока.

Еще одной важной технической характеристикой альтернатора является его коэффициент полезного действия. Это понятие представляет собой отношение полезной мощности к полной.

На холостом ходе КПД равно нулю, максимальные показатели достигаются при номинальных нагрузках. В мощных инновационных моделях генераторов постоянного тока коэффициент полезного действия приближается к 90%.

Разновидности по способу возбуждения

По способу возбуждения генераторы постоянного тока делятся на два вида:

  • с самовозбуждением;
  • с независимым возбуждением обмоток.

Для самовозбуждения оборудования обязательно требуется электричество, которое им же и вырабатывается. По принципу коммутации обмоток самовозбуждающиеся якоря альтернаторов делятся на следующие разновидности:

  • оборудование с параллельным возбуждением;
  • устройства с последовательным возбуждением;
  • генераторы смешанного типа, которые получили название – компудные.

Каждая разновидность имеет свои конструктивные особенности, преимущества и недостатки.

Для обеспечения оптимальных условий для работы оборудования требуется наличие стабильного напряжения на зажимах. Особенность устройства заключается в параллельном возбуждении выводов катушки, которые подсоединены через регулировочный реостат, расположенный параллельно обмотке якоря.

Для оборудования с независимым возбуждением источником питания выступают внешние устройства или аккумуляторные батареи. В маломощных модификациях устанавливаются постоянные магниты, обеспечивающие создание основного магнитного потока. Основное достоинство заключается в том, что на напряжение на зажимах не влияет возбуждающий ток.

Устройства со смешанным возбуждением сочетают положительные качества вышеописанных разновидностей. Конструктивные особенности – две катушки индуктивности, основная и вспомогательная. Цепь параллельной обмотки включает в себя реостат, который используется для регуляции силы тока возбуждения.

Область применения

Система постоянного тока в самолете

Генераторы постоянного тока имеют довольно обширный список применения. Его активно используют практически во всех отраслях промышленности, особенно в автомобилестроении и при сооружении российских локомотивов нового поколения, которые оснащают асинхронные двигатели, характеризующиеся работой на переменном токе.

Также электротехническое оборудование может использовать в быту для портативных сварочных аппаратов с автономной системой питания и для бытовой техники, оснащенной мощными пусковыми двигателями.

Перед покупкой следует проанализировать, с какими целями электротехническое оборудование должно будет справляться. Исходя из этого подбирается наиболее подходящая модификация генераторов постоянного тока.

Приобрести оборудование можно в специализированных магазинах или на интернет-площадках. При покупке важно проверить наличие всей необходимой сопроводительной документации и гарантийного талона. Предварительно также осматривается целостность корпуса и наличие повреждений: если таковые имеются, лучше воздержаться от покупки. При покупке через интернет стоит внимательно ознакомиться с отзывами о магазине на различных форумах.

Устройство генератора тока | У электрика.ру

Приветствую всех на нашем сайте. Сегодня мы поговорим об устройстве генератора тока. Попробуем максимально охватить данную тему  и рассмотреть устройство  генераторов постоянного и переменного токов.

На самом деле, не совсем верно называть это устройство генератором именно переменного или постоянного тока, поскольку, ток возникает только в замкнутом контуре. В общем, в обмотках генератора возникает ЭДС, а не ток. Ток начинает протекать только тогда, когда к обмоткам подключается какой-либо потребитель. Однако, в этой статье мы будем пользоваться устоявшимися понятиями.

Какие бы ни были электрические генераторы основной их принцип – выработка электрической энергии за счёт вращения обмотки в магнитном поле. Это значит, что можно выделить два схематических вида генераторов: либо мы вращаем магнитное поле в неподвижном проводнике, либо вращаем проводник в неподвижном магнитном поле.

Содержание:

Устройство генератора переменного тока

Итак, относительно устройства генератора переменного тока и принципа его действия.

Наибольшее распространение получили генераторы переменного тока с неподвижным проводником. Обусловлено это тем, что ток возбуждения по отношению к току, который получают с генератора, небольшой. Если посмотрите на картинку, то увидите два кольца, по которым протекает ток обмотки возбуждения и это слабое звено любого генератора с обмоткой возбуждения. То есть, либо по кольцам через щётки мы подаем небольшой ток возбуждения, либо через кольца снимаем большой рабочий ток. В электричестве неподвижная часть генераторов или двигателей, на которой находится обмотка, называется статором. Подвижная часть может называться ротором или якорем.

Основные виды генераторов переменного тока

Видов генераторов довольно много. Попробуем классифицировать их по основным направлениям.

  • По виду используемой энергии:
    • Энергия ветра
    • Энергия газа
    • Энергия жидкого топлива
    • Энергия тепла
    • Энергия воды
  • По типу генератора:
    • Однофазный
    • Трёхфазный
    • Синхронный
    • Асинхронный
    • По количеству полюсов статорной обмотки

Есть и другие типы, но они менее распространены.

  • По типу возбуждения:
    • Независимое возбуждение. В этом случае на одном валу с генератором переменного тока находится еще и генератор постоянного тока, который питает только обмотку возбуждения. Возбуждение в таком случае может выполняться и любым другим источником тока, например, аккумулятором.
    • Самовозбуждение. В этом случае, напряжение для обмотки возбуждения получают непосредственно с используемого генератора.
    • Возбуждение с помощью магнитов, которые располагаются на статоре или на якоре, что значительно упрощает устройство генератора, но с помощью такого способа получить мощные генераторы не получится.
Синхронный генератор : схема, устройство, принцип работы

Что значит синхронный по отношению к двигателю или генератору? Если совсем просто, то частота переменного тока жёстко зависит от скорости вращения ротора электрической машины и наоборот. Таким образом, можно относительно легко контролировать частоту переменного тока. Сам по себе синхронный генератор имеет ряд преимуществ, благодаря которым стал наиболее распространенным. Скажу вам по большому секрету, именно синхронные генераторы используются на всех станциях, где производят электричество.

Приводным двигателем (на схеме обозначен как ПД) может выступать любое вращающее устройство: двигатель, турбина, крыльчатка ветряной мельницы или водяного колеса. На одном валу с ПД находится ротор генератора с обмоткой возбуждения. На обмотку подается постоянное напряжение и вокруг обмотки образуется магнитное поле. Когда ротор вращается, в обмотках статора возникает ЭДС, то есть появляется напряжение, только уже переменное, частота которого зависит от скорости вращения ротора n1 и количества пар полюсов p. Частоту ЭДС можно высчитать по формуле.

Асинхронный генератор: схема, устройство, принцип работы

Устройство асинхронного генератора

Асинхронный генератор, это, по сути, асинхронный двигатель. То есть, любой асинхронный двигатель можно перевести в режим генерации энергии и наоборот. Конструктивно, устройство, которое называют генератором, выполнено таким образом, чтобы иметь хорошее охлаждение. Глубоко останавливаться на принципе действия асинхронных машин не будем, но вкратце расскажу, почему их называют асинхронными на примере двигателя.

Когда на обмотки статора подается напряжение, образуется магнитное поле, у трёхфазных двигателей оно круговое, у однофазных эллипсообразное, стремящееся к круговому. Магнитное поле начинает пересекать витки обмотки статора. В короткозамкнутой обмотке ротора возникает ЭДС, то есть напряжение, а поскольку обмотка короткозамкнутая, по ней начинает протекать ток, который тоже создает магнитное поле. Взаимодействие этих магнитных полей приводит ротор в движение. Что будет, если скорость ротора станет равна скорости магнитного поля, создаваемого статором? Правильно, магнитное поле статора перестанет пересекать обмотку ротора. Это можно сравнить с тем, что две машины двигаются на одинаковой скорости. Вроде бы машины двигаются, но при этом по отношению друг к другу они словно стоят на месте, просто земля с большой скоростью проносится под машинами. Так вот, как только скорость ротора и скорость магнитного поля статора станут одинаковыми, в обмотке ротора перестанет вырабатываться ЭДС, прекратится взаимодействие магнитных полей статора и ротора и ротор начнёт останавливаться. Поэтому скорость вращения ротора асинхронного двигателя всегда несколько меньше скорости вращения магнитного поля статора и эта величина называется скольжение.

Так вот, чтобы асинхронный двигатель стал генератором, надо определить скольжение и увеличить скорость вращения ротора на эту величину. Допустим, мы имеем однополюсный трехфазный асинхронный двигатель со скоростью вращения вала 2800 оборотов. Если бы такой двигатель был синхронным, скорость вращения составила бы 3000 оборотов. То есть скольжение составляет 200 оборотов в минуту. Это значит, что если мы начнём вращать ротор со скоростью 3200 оборотов в минуту, то двигатель перейдёт в генераторный режим и будет уже не потреблять, а вырабатывать ЭДС.

Сложность применения таких генераторов в том, что они подвержены провалам. Например, если включить активную нагрузку (лампочку накаливания или нагреватель), пусковой ток будет небольшим. Значительной перегрузки не произойдет, и генератор будет работать стабильно. Если же включить реактивную нагрузку, например, двигатель, то будет большой пусковой ток, превышающий номинальный в 5-20 раз, который «провалит» генератор, то есть вызовет резкое падение напряжения на обмотках генератора. После такого провала асинхронный генератор снова нужно возбуждать. Так что, простота асинхронного генератора перевешивается серьезным недостатком.

Ну и еще нужна конденсаторная установка для возбуждения короткозамкнутой обмотки ротора. Если подобрать неверно ёмкость конденсаторов, то в случае «недобора» от генератора мы получим меньше тока, а в случае «перебора», наш генератор будет сильно перегреваться.

Схемы подключения

Собственно, даже не схемы включения, а варианты. Их, как правило, три:

      • Автоматическое включение. В этом случае устанавливается специальный блок аварийного включения. Как только отключают напряжение в сети, блок подаёт команду на запуск генератора и переключает сеть с внешнего источника питания, на генераторную установку.
      • Ручное включение. В этом случае, пользователь сам проводит операцию переключения с внешнего источника питания на генераторную установку и вручную запускает генератор.
      • Синхронная работа. Такой режим, в основном используется на крупных станциях, генераторы которых объединены в одну сеть. Все генераторы этой сети работают синхронно, с одной частотой, с одной очерёдностью фаз и с одинаковым напряжением на обмотках статора.
Однофазный генератор

Здесь я подробно останавливаться не буду. Такие устройства сейчас можно встретить в любом магазине инструментов. Если однофазный генератор используется как запасной источник электроэнергии, то подключается к домовой сети, как правило, посредством рубильника. То есть, одновременно внешний источник питания и генератор на одну сеть не могут – либо то, либо другое. Во-первых, незачем, во-вторых, это сильно усложнило бы и увеличило стоимость бытовых генераторов. Единственное, на чём могу здесь остановиться, это включение однофазного генератора в трёхфазную сеть.

Включение однофазного генератора в трёхфазную сеть

Однако у такого метода есть свой недостаток. Трёхфазные двигатели в такой сети работать не будут, если же их включить, то очень быстро нагреются и выйдут из строя.

Трехфазный генератор

Трёхфазные генераторы могут быть бытовыми и промышленными. Устройство генератора трёхфазного тока в бытовом варианте практически ничем не отличается от однофазного, как и схема включения. Единственное условие при включении бытового генератора в сеть, если в такой сети имеются трёхфазные двигатели – соблюдать очередность фаз. В случае же, если нагрузка в доме однофазная, то такой предосторожностью можно пренебречь.

Устройство генератора трёхфазного тока в промышленном варианте – это устройство, оснащенное автоматическим пуском и иногда может быть оснащено устройством синхронизации. Подключение таких генераторов лучше доверить специалистам.

Ну а бытовой генератор точно так же, как и однофазный включается в сеть через рубильник. Следовательно, в зависимости от положения рубильника работает либо внешний источник питания, либо генератор.

Устройство генератора постоянного тока

Чтобы узнать, что такое генератор постоянного тока, устройство и принцип действия вернёмся немного назад. Мы уже выяснили, как работает генератор переменного тока. Давайте подробнее рассмотрим процесс возникновения ЭДС. Поскольку ротор вращается, у нас есть цикл равный одному обороту ротора или 360°. Давайте узнаем, что происходит в этом цикле:

      • 0° — ЭДС =0
      • 90° — ЭДС достигает максимального значения со знаком «+»
      • 180° — ЭДС снова равна 0
      • 270° — ЭДС достигает пикового значения со знаком «-»

Как же сделать так, чтобы не менялась полярность напряжения? Великие умы придумали следующее – применить коллектор, то есть, снимать напряжение только нужной полярности. Помните, мы говорили, что в генераторе переменного тока, рабочей является обмотка статора, а на роторе находится обмотка возбуждения. Так вот, в генераторе постоянного тока напряжение снимается только с ротора, который называется якорем.

Схема генератора постоянного тока

Если такой генератор будет иметь только одну пару полюсов, как на картинке, то мы получим пульсирующее постоянное напряжение, где частота будет в два раза больше скорости вращения. То есть, если скорость вращения будет 50 оборотов в секунду, то частота пульсации будет 100 Гц. Чтобы снизить пульсацию напряжения увеличивают количество пар полюсов.

С момента изобретения генератора постоянного тока схематично и по принципу действия он практически не изменился, изменилась лишь технология изготовления и сейчас он выглядит так:

Основные виды генераторов постоянного тока

В настоящее время набирают популярность двигатели постоянного тока без коллектора. Возможен ли вариант бесколлекторного генератора? К сожалению, пока решить эту задачу не удалось. Так что, если вы где-то увидите название «Бесколлекторный генератор постоянного тока», знайте, что это генератор переменного тока с выпрямительным блоком.

По этой причине, генераторы постоянного тока характеризуют только по типу возбуждения:

  1. Генераторы, возбуждаемые магнитами. Большую мощность такие генераторы развить не могут, поэтому нашли применение только там, где требуются небольшие мощности. Ну и, конечно же, применение магнитов ощутимо удешевляет стоимость таких генераторов.
  2. Независимое возбуждение. Точно так же, как и у генераторов переменного тока, для возбуждения применяется внешний источник питания, не связанный с генератором.
  3. Зависимое возбуждение, которое делится на три типа:
    • Параллельное возбуждение. Как можно понять из названия, обмотка возбуждения в таком генераторе подключена параллельно обмотке якоря. Иногда такой вид возбуждения называют шунтовый.
    • Последовательное возбуждение. Здесь обмотка возбуждения подключается как гирлянда, последовательно обмотке якоря. Такой вид иногда называют сериесным.
    • Смешанное возбуждение или компаундное. Обмотка возбуждения таких генераторов состоит из двух частей, первая подключается шунтовым методом, вторая сериесным.
Генераторы с независимым возбуждением: схема, устройство, принцип работы

Схема генератора независимого возбуждения

Принцип работы этого генератора довольно прост. Однако простота генератора является его же недостатком – он требует внешнего независимого источника питания. Якорь генератора разгоняют до необходимой скорости, затем с помощью реостата начинают возбуждать генератор. На обмотках якоря возникает ЭДС и при подключении нагрузки начинает протекать ток.

Нагрузочная способность такого генератора очень хорошая. Как правило, разница между напряжением холостого хода, когда нагрузка не подключена и напряжением при номинальной нагрузке генератора, когда потребитель загружает полностью – составляет всего 5-10%.

Преимущество генератора с независимым возбуждением ещё и в том, что его можно запускать под нагрузкой, то есть, с присоединенными электроприборами.

Генераторы с параллельным возбуждением: схема, устройство, принцип работы

Схема генератора параллельного возбуждения

У генератора с параллельным включением обмотки возбуждения, в принципе, тоже неплохие нагрузочные характеристики, хотя и несколько хуже, чем у схем с независимым возбуждением – 10-30%. У схем с зависимым возбуждением есть одна особенность, для того, чтобы произошло возбуждение, металл генератора должен иметь остаточную намагниченность. Достаточно 2-3% остаточной намагниченности чтобы запустился процесс самовозбуждения. Конечно же, при этом направление обмотки возбуждения должно совпадать с направлением поля остаточной намагниченности.

Якорь генератора раскручивают до номинальных оборотов, за счет остаточного намагничивания происходит самовозбуждение, то есть, в контуре генератор-обмотка возбуждения появляется ЭДС, появляется небольшой ток. Он увеличивает ЭДС, следовательно, ток снова увеличивается и так происходит до тех пор, пока не будет достигнут баланс между падением напряжения в обмотке генератора и падением напряжения в обмотке возбуждения.

В работе генератора есть одна особенность. Если плавно увеличивать нагрузку вплоть до короткого замыкания, то в какой-то момент мощность генератора достигнет пиковых значений, затем пойдет на спад. По сути, если в момент номинальной загрузки генератора устроить короткое замыкание, то ничего страшного не произойдет. Но если это сделать при небольшой нагрузке, то ток короткого замыкания достигает критических значений 8-10 Iн, а значит, такие генераторы крайне настоятельно рекомендуется защищать от короткого замыкания любым доступным способом.

Такие генераторы получили наибольшее распространение, поскольку не требуют внешних источников питания, имеют неплохую нагрузочную способность и позволяют контролировать ток возбуждения.

Генераторы с последовательным возбуждением: схема, устройство, принцип работы

Схема генератора последовательного возбуждения

Поскольку ток обмотки возбуждения в данном случае равен току в цепи, а значит, достигает больших значений, обмотка возбуждения выполняется толстым проводом и имеет меньшее количество витков, чем в предыдущих двух схемах. Принцип работы такой же, как и у предыдущей схемы. Обмотка и поле остаточной намагниченности должны совпадать по направлению. При раскручивании якоря до номинальной частоты возникает ЭДС, поднимается ток и дальше по нарастающей, пока не будет достигнут баланс.

Но здесь есть один небольшой нюанс. Ток обмотки возбуждения изменяется от тока нагрузки, и регулировать ток возбуждения возможности нет. А это приводит к тому, что очень сильно изменяется и напряжение. Здесь мы получаем самый настоящий генератор тока, а не напряжения. Именно поэтому область применения генератора с последовательным возбуждением сильно ограничена.

Генераторы со смешанным возбуждением: схема, устройство, принцип работы

Схема генератора со смешанным возбуждением

На этом типе соединения нужно остановиться подробнее. У нас есть две обмотки, а значит, их можно включать как согласованно, так и встречно. Здесь я приведу график внешних характеристик  такого генератора, и мы по ним пройдемся.

График внешних характеристик генератора постоянного тока со смешанным возбуждением

Итак, раскручиваем якорь до номинальных оборотов. Остаточная намагниченность возбуждает параллельную обмотку, генератор выходит на рабочий режим. Теперь, если мы подключим нагрузку, при этом последовательная обмотка включена согласованно, то возникает дополнительный ток возбуждения. Последовательная обмотка становится, как бы, поддерживающей или опорной. Этот вид включения, если последовательная обмотка была рассчитана, как компенсирующая, позволяет довольно жестко поддерживать напряжение в заданных пределах. На графике это очень хорошо видно по кривой №1.

Если требуется получить некий запас напряжения, например, генератор находится на значительном удалении от потребителя и требуется учесть потери на кабельных линиях, то в последовательной катушке возбуждения увеличивают количество витков. Тем самым, мы получаем более крутую внешнюю характеристику, но поддержание напряжения на номинальных нагрузках остается по-прежнему жестким. Это видно по кривой №2.

Для сравнения, кривая №3 показывает внешнюю характеристику генератора только с параллельным возбуждением.

Так зачем же требуется встречное включение катушек возбуждения? Если вы посмотрите на кривую №4, то можете догадаться, что в случае короткого замыкания, ток возрастает до определенного момента, затем начинает падать. Из графика видно, что ток не достигает даже номинального значения, то есть, примерно 0,7 Iн. В таком варианте включения обмоток генератор без риска повреждения можно использовать для частых коротких замыканий, например сварочные работы.

К сожалению, у всех схем, где используется зависимое возбуждение, есть один существенный недостаток. Поскольку это трудно назвать возбуждением, скорее это самовозбуждение, то запускать такие генераторы вместе с нагрузкой не представляется возможным. Как я уже говорил выше, возбуждение происходит за счёт остаточного намагничивания, которое составляет буквально 2-3%. А значит, если к выводам генератора будет подключена нагрузка, ток будет стремиться по пути наименьшего сопротивления, то есть самой нагрузки. Другими словами, вместе с нагрузкой тока будет недостаточно для формирования магнитного поля.

Думаю, на этом можно закончить ознакомительную статью по генераторам переменного и постоянного тока.

Поделиться ссылкой:

Похожее

Схема, особенности, принцип действия и устройство генератора постоянного тока

Эпоха электрификации началась не так давно и за пару столетий полностью изменила наш образ жизни. Посмотрите вокруг, везде, где только падает глаз, обязательно увидите какой-нибудь электрический прибор. Люди настолько привыкли к разным машинам, которые выполняют за них практически всю работу, что возникает иллюзия, будто бы так было всегда. Но заглянем за сторону завесы, скрывающей от нас процесс жизнедеятельности электрических друзей. Разберем принцип действия и устройство генератора постоянного тока.

Немного истории

Электричество наблюдали еще древние греки. Было замечено свойство янтаря притягивать к себе разные частицы. Люди считали это магнетизмом, присущим смоле. Но позже заметили способность и других материалов приобретать магнетизм. Например, стекло при натирании тоже начинало привлекать к себе мелкие легкие элементы: частицы бумаги, волоски и пыль. Так стало понятным, что магнитный эффект возникает по какому-то закону.

Впоследствии, в XVIII веке, был создан прототип современного конденсатора, окрещенный по имени изобретателя «лейденской банкой». Этот несложный механизм умел накапливать заряд, который в то время считали своеобразной жидкостью, насыщающей твердые тела и способной перетекать от одного тела к другому с поразительной скоростью – на несколько миль за доли секунд.

Когда был открыт атом и его составляющие ядро и электрон, все стало на свои места. Люди поняли, что именно электроны и являются теми зарядами, которые создавали такие необъяснимые явления, как электрические разряды. Но пока это были лишь статические заряды. С опытов Фарадея и Эрстеда берет свое начало электричество, которое мы знаем сейчас. Они изобрели макет-генератор постоянного тока, устройство и принцип действия которого основаны на явлении электродвижущей силы ЭДС.

Сила движения электричества

Как воды реки приводит в движение притяжение земли, так заряженные частицы в проводнике заставляет перемещаться ЭДС. Эта сила тесно связана с магнитным явлением, а именно появляется, как только меняется поток, создаваемый магнитом. ЭДС способна работать только в веществе, где всегда в наличии есть свободные заряды. Таким свойством обладают металлы и солевые растворы.

ЭДС тем больше, чем быстрее изменяется интенсивность магнитных волн. Как известно, магнит два полюса имеет всегда. В соответствии с тем, в каком направлении изменяется поток относительно проводника, ток в проводнике течет в ту или иную сторону. Положительные и отрицательные заряды сами создают между собой энергетическое поле, которое мы называем напряжением, оно тем больше, чем сильнее суммарный электрический заряд одноименного полюса.

Что такое электрический генератор?

Конструкция или машина, которая способна преобразовывать любую механическую силу в электрическую энергию, получила название генератора электричества. Принцип действия и устройство генератора постоянного тока связаны с магнетизмом. Если взять постоянный магнит и пересекать поле его напряженности проводником, то в последнем появляется сила, заставляющая двигаться в одном направлении заряженные частицы – появляется ток. То же самое будет происходить при неподвижном проводнике и движущемся магните.

Экспериментально учеными установлено, что величина тока тем больше, чем больше:

  • Величина магнитного потока между полюсами магнита.
  • Скорость пересечения линий напряженности.
  • Длина токоведущего провода.

Если же перемещать проводник параллельно тому, как идет поток, то индукции в нем не наблюдается. Из этого вывели закон правой руки, который помогает понять, в каком направлении движется ток. При расположении руки правой части тела ладонью так, чтобы в нее входили магнитные линии напряженного поля, а палец большой был отогнут и указывал туда, куда происходит движение проводника, оставшиеся четыре пальца покажут путь тока. В магните вектор движения поля направлен от севера к югу.

Схема работы элементарного генератора

Принцип действия и устройство генератора постоянного тока простого типа следующие: рамка изготовлена из токоведущего материала, насажена на ось и производит вращение между полюсами магнита. Каждый свободный конец рамки подсоединен к своему контакту, имеющему вид дугообразной пластины. Вместе контакты составляют окружность, разорванную в двух точках (коллектор). Эти полукруглые контакты подвижно соединены с подпружиненными проводящими щетками. Они снимают ток.

В пространстве рамка относительно контактов ориентирована так, что при пересечении каждой ее половины участков наибольшей величины магнитного потока щетки замкнуты на контактах. Когда же элементы рамки проходят фазу движения вдоль линий – щеточные контакты разомкнуты с коллектором.

Если подключить осциллограф, видно, что генератор постоянного тока устройство и принцип действия имеет такой, что выдает чередование полуволн, находящихся по одну сторону координат и изменяющих свое значение от нулевого к наивысшему и снова к нулю. Частота следования их зависит от скорости поворота рамки. Это означает, что ток в такой системе движется в одном направлении (постоянный), но имеет пульсирующий вид.

Принцип действия и устройство генератора постоянного тока

Реальный генератор тока постоянного устроен более сложно, хотя принцип его действия ничем не отличается от рассмотренного выше. Вместо одной рамки и пары полукруглых контактов он имеет множество рамок и контактов коллектора. Это, во-первых, повышает мощность такой машины, во-вторых, сглаживает пульсации тока, так как каждая рамка создает свою полуволну, которые, налаживаясь друг на друга, образуют суммарный ток. Такая вращающаяся система получила название якоря или ротора.

Магнит генератора тоже видоизменен. Его роль выполняет электромагнит, состоящий из обмотки и сердечника. Используя электромагниты, можно создавать большой магнитный поток, который не под силу для обычного постоянного. К тому же величину потока можно легко менять. Неподвижная часть генератора названа статором.

В зависимости от режима работы машины во время вращения вала, между статором и ротором наблюдаются следующие процессы:

  1. К генератору не подключена нагрузка. В случае такой холостой работы якорь производит вращение, в нем ЭДС наводится, но тока в обмотке нет, так как цепь не замкнута.
  2. Генератор постоянного тока, схема устройства которого подключена к цепи, работает в режиме нагрузки. В этом случае в якоре течет ток и появляется новая составляющая – магнитный поток, создаваемый якорем (реакция якоря). Этот поток движется в таком направлении, что противодействует основным силовым линиям, создаваемым электромагнитом. В результате реальная ЭДС будет ниже, то есть снижается мощность генератора. И чем больше нагрузка генератора, тем больше энергии тратится на преодоление реакции якоря при вращении вала.

Чтобы нивелировать магнитный поток якоря, в схему ротора вводят так называемые компенсационные обмотки, в которых образуется магнитный поток, ослабляющий реакцию якоря.

Типы генераторов, вырабатывающих постоянное электричество

Принцип действия и устройство генераторов постоянного тока отличаются по исполнению схемы возбуждения. Они бывают:

  • Магнитоэлектрическими. В них для создания магнитного потока применяют постоянные магниты. Такие машины, обычно небольшой мощности, имеют высокий КПД, так как нет потерь в обмотках возбуждения. Недостаток устройств в сложности регулирования.
  • Генераторами с независимой схемой возбуждения. Это устройства, обмотка электромагнитов которых запитана от сторонних источников питания: аккумулятора или генератора.
  • Самовозбуждающимися генераторами постоянного тока. Такие устройства питают электромагниты от своего же якоря. Главным условием самовозбуждения является остаточный магнитный поток. Конструкция, принцип действия генераторов и схема их включения бывает компаундной, шунтовой и сериесной.

Принцип работы и устройство генератора из электродвигателя

Принцип обратимости электрических машин говорит о том, что любой электродвигатель может быть преобразован в генератор и наоборот. Ведь оба этих устройства используют ЭДС индукции, как основу своей работы. Только в двигателе на ротор подают электрический ток, который, создавая магнитный поток, отталкивается от полюсов магнита статора, совершая вращательное движение.

Если же вал двигателя вращать с определенной скоростью, в обмотках якоря начнет наводиться ЭДС индукции и потечет ток. Ограничение лишь в толщине провода обмотки якоря. Когда провод тонкий, то получить большую мощность у такого генератора не получится.

Где нашел применение источник постоянного тока?

Несмотря на то что постоянное электричество можно получить методом выпрямления переменного, широко используют генератор постоянного тока. Принцип действия, схема такой машины незаменимы на металлургических предприятиях, в мощных электролизных установках заводов. В транспортной промышленности агрегаты работают в электровозах, пароходных судах. Для питания возбуждающих обмоток генераторов переменного тока на электростанциях также применимы источники постоянного напряжения. Для бытовых целей разработаны динамо-машины тока постоянного. Их можно увидеть на велосипедах, где они питают осветительные фары.

Заключение

Генераторы тока постоянной полярности хороши тем, что могут вырабатывать электричество при разной скорости вращения вала. В них не нужно выдерживать четкую частоту, как, например, у генераторов переменного тока, где она должна быть в 50 Гц. Такие машины очень удобно использовать в качестве альтернативных источников электричества, например в ветрогенераторах.

Конструкция

, принцип работы, типы и применение

Первоначальный электромагнитный генератор (диск Фарадея) был изобретен британским ученым Майклом Фарадеем в 1831 году. Генератор постоянного тока представляет собой электрическое устройство, используемое для выработки электроэнергии. Основная функция этого устройства - преобразовывать механическую энергию в электрическую. Доступно несколько типов механических источников энергии, таких как ручные кривошипы, двигатели внутреннего сгорания, водяные турбины , газовые и паровые турбины. Генератор обеспечивает энергией все электрические сети . Обратную функцию генератора может выполнять электродвигатель. Основная функция двигателя - преобразование электрической энергии в механическую. Двигатели, как и генераторы, обладают схожими характеристиками. В этой статье обсуждается обзор генераторов постоянного тока.

Что такое генератор постоянного тока?

Генератор постоянного тока или генератор постоянного тока - это один из видов электрических машин, и основная функция этой машины - преобразовывать механическую энергию в электричество постоянного тока. В процессе изменения энергии используется принцип энергетически индуцированной электродвижущей силы. Схема генератора постоянного тока показана ниже.


Генератор постоянного тока

Когда проводник рассекает магнитный поток , в нем будет генерироваться энергетически индуцированная электродвижущая сила на основе принципа электромагнитной индукции Закона Фарадея . Эта электродвижущая сила может вызвать протекание тока, когда цепь проводника не разомкнута.

Конструкция

Генератор постоянного тока также используется в качестве двигателя постоянного тока без изменения его конструкции.Следовательно, двигатель постоянного тока, иначе генератор постоянного тока, можно вообще назвать машиной постоянного тока . Конструкция 4-полюсного генератора постоянного тока показана ниже. Этот генератор состоит из нескольких частей , таких как ярмо, полюса и полюсные наконечники, обмотка возбуждения, сердечник якоря, обмотка якоря, коммутатор и щетки. Но двумя основными частями этого устройства являются статор и ротор .

Статор

Статор является важной частью генератора постоянного тока, и его основная функция заключается в создании магнитных полей, в которых вращаются катушки.Сюда входят стабильные магниты, два из которых обращены противоположными полюсами. Эти магниты расположены в области ротора.

Сердечник ротора или якоря

Сердечник ротора или якоря - вторая важная часть генератора постоянного тока, и он включает в себя металлические пластины с прорезями и прорезями, которые уложены друг на друга для формирования цилиндрического сердечника якоря. Как правило, эти пластинки предлагаются для уменьшения потерь из-за вихревого тока .


Обмотки якоря

Пазы сердечника якоря в основном используются для удержания обмоток якоря. Они имеют форму обмотки замкнутой цепи, и она соединена последовательно с параллелью для увеличения суммы производимого тока.

Ярмо

Внешняя конструкция генератора постоянного тока представляет собой ярмо, и оно выполнено из чугуна или стали. Он дает необходимую механическую мощность для передачи магнитного потока , передаваемого через полюса.

Полюса

В основном используются для удержания обмоток возбуждения. Обычно эти обмотки намотаны на полюса, и они соединены последовательно, в противном случае - параллельно обмоткам якоря . Кроме того, полюса будут соединяться по направлению к ярму с помощью метода сварки, в противном случае с помощью винтов.

Полюсный башмак

Полюсный башмак в основном используется для распределения магнитного потока, а также для предотвращения падения катушки возбуждения.

Коммутатор

Коммутатор работает как выпрямитель для изменения напряжения переменного тока на напряжение постоянного тока внутри обмотки якоря на щетки. Он разработан с медным сегментом, и каждый медный сегмент защищен друг от друга с помощью листов слюды . Он расположен на валу станка.

Коммутатор в генераторе постоянного тока
Функция коммутатора генератора постоянного тока

Основная функция коммутатора в генераторе постоянного тока заключается в изменении переменного тока на постоянный.Он действует как реверсивный переключатель, и его роль в генераторе обсуждается ниже.

ЭДС, наводимая в катушке якоря генератора, является переменной. Таким образом, ток в катушке якоря также может быть переменным. Этот ток можно реверсировать через коммутатор в точный момент, когда катушка якоря пересекает магнитную несмещенную ось. Таким образом, нагрузка достигает постоянного или однонаправленного тока.

Коммутатор гарантирует, что ток от генератора всегда будет течь в одном направлении.Щетки будут обеспечивать качественные электрические соединения между генератором и нагрузкой, перемещаясь по коммутатору.

Щетки

С помощью щеток можно обеспечить электрические соединения между коммутатором , а также с внешней цепью нагрузки.

Принцип работы

Принцип работы генератора постоянного тока основан на законах Фарадея электромагнитной индукции . Когда проводник находится в нестабильном магнитном поле, внутри проводника индуцируется электродвижущая сила.Величина наведенной ЭДС может быть измерена с помощью уравнения электродвижущей силы генератора .

Если проводник находится на замкнутой полосе, индуцируемый ток будет течь по ней. В этом генераторе катушки возбуждения создают электромагнитное поле, а проводники якоря превращаются в поле. Следовательно, в проводниках якоря будет возникать электромагнитно индуцированная электродвижущая сила (ЭДС). Путь наведенного тока будет определяться правилом правой руки Флеминга.

Уравнение ЭДС генератора постоянного тока

Уравнение ЭДС генератора постоянного тока согласно законам электромагнитной индукции Фарадея равно Eg = PØZN / 60 A

Где Φ - это

поток или полюс в пределах Webber

'Z '- общее количество проводов якоря

' P '- количество полюсов в генераторе

' A '- количество параллельных дорожек внутри якоря

' N '- вращение якоря в об / мин (обороты в минуту)

'E' - индуцированное e.mf в любой параллельной полосе внутри якоря

'Eg' - генерируемая ЭДС в любой из параллельных полос

'N ​​/ 60' - количество оборотов в секунду

Время одного поворота будет dt = 60 / N sec

Типы генераторов постоянного тока

Классификация генераторов постоянного тока может быть сделана по двум наиболее важным категориям, а именно: отдельно возбужденные, а также самовозбуждающиеся.

Типы генераторов постоянного тока
С раздельным возбуждением

В типах с раздельным возбуждением катушки возбуждения усиливаются от автономного внешнего источника постоянного тока.

Самовозбуждение

В самовозбуждающемся типе катушки возбуждения усилены за счет генерируемого тока генератором. Генерация первой электродвижущей силы будет происходить из-за ее выдающегося магнетизма внутри полюсов поля.

Произведенная электродвижущая сила вызовет подачу части тока в катушки возбуждения, что, таким образом, увеличит поток поля, а также генерацию электродвижущей силы. Кроме того, эти типы генераторов постоянного тока можно разделить на три типа, а именно с последовательной обмоткой, шунтирующей обмоткой и составной обмоткой.

  • При последовательной намотке обмотка возбуждения и обмотка якоря соединены последовательно друг с другом.
  • При шунтовой обмотке обмотка возбуждения и обмотка якоря подключены параллельно друг другу.
  • Составная обмотка представляет собой смесь последовательной и параллельной обмоток.
КПД генератора постоянного тока

Генераторы постоянного тока очень надежны с показателями КПД 85-95%

Считайте, что выходной сигнал генератора равен VI

Входной сигнал генератора равен VI + Потери

Вход = VI + I2aRa + Wc

Если ток возбуждения шунта незначителен, то Ia = I (примерно)

После этого n = VI / (VI + Ia2Ra + wc) = 1 / (1 + Ira / V + wc / VI)

Для наивысшего КПД d / dt (Ira / V + wc / VI) = 0 в противном случае I2ra = wc

Следовательно, КПД будет максимальным, когда переменные потери эквивалентны постоянным потерям

Ток нагрузки, эквивалентный наивысшему КПД, равен I2ra = wc в противном случае I = √wc / ra

Потери в генераторе постоянного тока

На рынке доступны различные типы машин, в которых общая входная энергия не может быть преобразована в выходную из-за потерь входной энергии.В генераторах этого типа могут возникать разные потери.

Потери в меди

Потери в меди в якоре (Ia2Ra), где ток якоря равен «Ia», а сопротивление якоря - «Ra». Для генераторов, таких как шунтирующие, потери в меди эквивалентны Ish3Rsh, что почти стабильно. Для генераторов с последовательной обмоткой потери в меди в поле эквивалентны Ise2 Rse, что также почти стабильно. Для генераторов, таких как составная обмотка, потери в меди в поле аналогичны Icomp2 Rcomp, которые также почти стабильны.При полной нагрузке потери в меди происходят на 20-30% из-за контакта щеток.

Сердечник, железо или магнитные потери

Классификация потерь в сердечнике может быть сделана на два типа, например, гистерезис и вихревой ток

Гистерезисные потери

Эти потери в основном возникают из-за реверсирования сердечника якоря. Каждая часть сердечника ротора проходит под двумя полюсами, такими как север и юг поочередно, и соответственно достигает полярности S и N. Когда ядро ​​подает напряжение ниже одного набора полюсов, ядро ​​завершает одну серию смены частоты.Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о том, что такое гистерезисные потери: факторы и их применение

Потери на вихревые токи

Сердечник якоря сокращает магнитный поток на всем его обороте, и ЭДС может индуцироваться внутри сердечника за пределами Согласно законам электромагнитной индукции, эта ЭДС чрезвычайно мала, однако она создает большой ток на поверхности сердечника. Этот огромный ток известен как вихревой ток, тогда как потери называются потерями на вихревые токи.

Потери в сердечнике стабильны для составных и шунтирующих генераторов, поскольку их токи возбуждения почти стабильны. Эти потери в основном происходят от 20% до 30% при полной нагрузке.

Механические потери

Механические потери могут быть определены как потери на трение вращающегося якоря в воздухе или потери от ветра. Потери на трение в основном возникают от 10% до 20% потерь полной нагрузки на подшипниках и коммутаторе.

Паразитные потери

Паразитные потери в основном возникают из-за сочетания потерь в сердечнике и механических потерь.Эти потери также называются вращательными потерями.

Разница между генераторами переменного и постоянного тока

Прежде чем мы сможем обсудить разницу между генераторами переменного и постоянного тока, мы должны знать концепцию генераторов. Как правило, генераторы делятся на два типа, например, переменного и постоянного тока. Основная функция этих генераторов - изменение мощности с механической на электрическую. Генератор переменного тока генерирует переменный ток, тогда как генератор постоянного тока генерирует постоянную энергию.

Оба генератора используют закон Фарадея для выработки электроэнергии.Этот закон гласит, что когда проводник перемещается в магнитном поле, он разрезает магнитные силовые линии, чтобы стимулировать ЭДС или электромагнитную силу внутри проводника. Величина этой наведенной ЭДС в основном зависит от силовой связи магнитной линии через проводник. Как только цепь проводника замкнута, ЭДС может вызвать протекание тока. Основными частями генератора постоянного тока являются магнитное поле и проводники, которые движутся в магнитном поле.

Основные различия между генераторами переменного и постоянного тока - одна из самых важных электрических тем.Эти различия могут помочь студентам изучить эту тему, но перед этим следует знать о генераторах переменного тока, а также генераторах постоянного тока во всех деталях, чтобы различия были очень просты для понимания. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о разнице между генераторами переменного и постоянного тока.

Характеристики

Характеристику генератора постоянного тока можно определить как графическое представление между двумя отдельными величинами. Этот график покажет установившиеся характеристики, которые объясняют основную взаимосвязь между напряжением на клеммах, нагрузкой и возбуждением через этот график.Ниже рассмотрены наиболее важные характеристики этого генератора.

Характеристики намагничивания

Характеристики намагничивания обеспечивают разность производимого напряжения в противном случае напряжение холостого хода через ток возбуждения при стабильной скорости. Этот вид характеристики также известен как характеристика холостого хода разомкнутой цепи.

Внутренние характеристики

Внутренние характеристики генератора постоянного тока могут быть нанесены на график между током нагрузки и генерируемым напряжением.

Внешние характеристики или характеристики нагрузки

Характеристики нагрузки или внешнего типа обеспечивают основные соотношения между током нагрузки, а также напряжением на клеммах при стабильной скорости.

Преимущества

Преимущества генератора постоянного тока a включают следующее.

  • Генераторы постоянного тока генерируют большую мощность.
  • Терминальная нагрузка этих генераторов высока.
  • Генераторы постоянного тока конструируются очень просто.
  • Они используются для генерации неравномерной выходной мощности.
  • Они полностью соответствуют 85-95% рейтингу эффективности.
  • Они дают надежный результат.
  • Они легкие и компактные.

Недостатки

К недостаткам генератора постоянного тока можно отнести следующее.

  • Генератор постоянного тока не может использоваться с трансформатором
  • Эффективность этого генератора низкая из-за множества потерь, таких как медные, механические, вихревые и т. Д.
  • Падение напряжения может происходить на больших расстояниях
  • Он использует разъемное кольцо коммутатор, поэтому он усложнит конструкцию машины
  • Дорогой
  • Высокие затраты на обслуживание
  • Искры будут генерироваться при выработке энергии
  • Больше энергии будет потеряно при передаче

Применения генераторов постоянного тока

Применение различных типов постоянного тока генераторы включают следующее.

  • Генератор постоянного тока с раздельным возбуждением используется для повышения напряжения, а также для гальваники . Он используется для питания и освещения с помощью регулятора поля
  • Генератор постоянного тока с самовозбуждением или шунтирующий генератор постоянного тока используется для питания, а также для обычного освещения с использованием регулятора. Может использоваться для аккумуляторного освещения.
  • Генератор постоянного тока серии используется в дуговых лампах для освещения, генератора стабильного тока и бустера.
  • Составной генератор постоянного тока используется для обеспечения источника питания для сварочных аппаратов постоянного тока.
  • Составной генератор постоянного тока уровня используется для электроснабжения общежитий, коттеджей, офисов и т. Д.
  • Генератор постоянного тока над составной частью используется для компенсации падения напряжения в фидерах.

Таким образом, это все про генератор постоянного тока . Наконец, исходя из приведенной выше информации, мы можем сделать вывод, что основные преимущества генераторов постоянного тока включают простую конструкцию и дизайн, легкость параллельной работы и проблемы стабильности системы в меньшей степени, чем генераторы переменного тока.Вот вам вопрос, каковы недостатки генераторов постоянного тока?

.Принцип работы и конструкция генератора постоянного тока

Простейший генератор представляет собой петлю из провода, вращающегося в магнитном поле между полюсами N и S, , как показано на рис. 4.1. Изменяющаяся во времени переменная ЭДС, индуцированная в контуре, заставляет переменный ток течь через контактные кольца и щетки во внешнюю цепь нагрузки. Такая машина представляет собой генератор переменного тока.

Преобразование переменного тока в постоянный осуществляется с помощью коммутатора с разъемным кольцом.Коммутатор, показанный на рис. 8.1 a

имеет два медных сегмента 4 , подключенных к концам 1 контура. Сегменты коммутатора закреплены на валу якоря и изолированы друг от друга и от вала. Стационарные щетки 2 и 3 , подключенные к внешней цепи, опираются на коммутатор и скользят по его поверхности.

Когда вал, несущий проволочную петлю и сегменты, начинает вращаться, щетки 2 и 3 попеременно контактируют с каждым сегментом.Щетки зафиксированы в таком положении, что они охватывают промежутки между сегментами в момент, когда ЭДС, индуцированная в контуре, равна нулю. В этом случае, когда якорь вращается, переменная ЭДС, индуцированная в контуре, изменяется синусоидально, если поле однородно, но каждая из щеток контактирует с этим сегментом и, таким образом, с тем концом проводника, который в данный момент имеет под полюсом определенной полярности.

Следовательно, ЭДС на щетках 2 и 3 не меняет знак, и ток течет в одном направлении от щетки 2, через внешнее сопротивление R, и к щетке 3. Но поскольку ЭДС во внешней цепи непостоянна, а изменяется во времени пульсирующим образом, эта волна пульсирующей ЭДС создаст пульсирующий ток.

Если намотать якорь двумя витками проволоки, расположенными под углом 90 относительно друг друга, и соединить концы витков с четырьмя сегментами коммутатора, пульсации ЭДС и тока во внешней цепи станут намного меньше. . При использовании большого количества витков проволоки вокруг якоря и множества сегментов коммутатора развивается ЭДС, и ток становится плавным и практически постоянным.

Рисунок 8.1b иллюстрирует разрез генератора постоянного тока. Стационарный элемент, статор, служит для создания магнитного поля, а вращающийся элемент, ротор, является якорем, предназначенным для создания ЭДС.

Статор, изображенный на рис. 8.2a, состоит из рамы 3, или ярма, полюсов основного поля 1, и коммутирующих (промежуточных) полюсов поля 2. Главный полюс, показанный на рис. 8.2b, представляет собой электромагнит, производящий магнитный поток.Он состоит из сердечника 4, катушки возбуждения 6, и полюсного наконечника 7.

Основная опора крепится к раме 3 болтом 5. Сердечник опоры отлит из стали и имеет в поперечном сечении овальную форму. Катушка возбуждения состоит из множества витков изолированного медного провода, намотанного на сердечник. Катушки всех полюсов соединены последовательно, образуя обмотку возбуждения. Ток, протекающий через обмотку, создает магнитный поток. Полюсный башмак закрепляет катушку возбуждения на сердечнике и обеспечивает равномерное распределение магнитного потока под полюсом .Ей придают такую ​​форму, чтобы воздушный зазор между полюсом и якорем был одинаковым по всей длине полюсной дуги. Коммутирующие полюса или межполюсники также несут катушки на своих сердечниках. Между главными полюсами закреплены межполюсники; их количество может быть равным или равным половине числа основных полюсов. Они установлены на

мощных станков для устранения искрения на щетках. Машины малой мощности обычно не имеют межполюсников.

Рама отлита из стали и служит механическим каркасом * станка. Он поддерживает основные и коммутационные полюса, закрепленные с внутренней стороны, а также несет на своих торцах концевые рамы или концевые рамы с подшипниками, в которых вращается вал машины. Рама изготовлена ​​на литых ножках для установки станка на опоры.

Якорь, показанный на рис. 8.3а, состоит из сердечника 1 , обмотки 2, и коммутатора 3. Сердечник якоря представляет собой цилиндр, состоящий из листов электротехнической листовой стали, изолированных друг от друга с помощью диафрагмы или бумаги для уменьшения потерь на вихревые токи. Стальные листы перфорированы по шаблону и снабжены прорезями для проводов обмотки якоря. Вентиляционные каналы сделаны в сердечнике якоря для охлаждения якоря. Обмотка тщательно изолирована от сердечника и закреплена в пазах немагнитными клиньями. Концевые соединения крепятся к опорным кольцам с помощью ленточной проволоки.Все катушки обмотки, установленные на якорь, соединены последовательно, образуя замкнутую цепь, и припаяны к сегментам коммутатора.

Коммутатор представляет собой цилиндр, состоящий из стержней коммутатора, которые представляют собой клиновидные (ласточкин хвост) отрезки жестко вытянутой меди, изолированные друг от друга и от рукава коммутатора тонкими полосками миканита. Каждая штанга коммутатора удерживается на месте путем зажима ее части с ласточкиным хвостом между V-образными выступами на втулке и кольцом, последнее крепится к втулке болтами с головкой под ключ.

Коммутатор - самая сложная деталь с точки зрения конструкции. Кроме того, в некоторых отношениях это самая важная часть машины постоянного тока. Поверхность коллектора должна быть строго цилиндрической, чтобы избежать раскачивания и искрения на щетках.

Щетки, собирающие ток и передающие его во внешнюю цепь, могут быть изготовлены из графита, угольно-графитового и бронзово-графитового типов. В высоковольтных машинах используются графитовые щетки с высоким контактным сопротивлением; низковольтные машины работают с бронзово-графитовыми щетками.На рис. 8.3b показан щеткодержатель. Щетка 4 , вставленная в коробку для щеток, прижимается к поверхности коллектора пружинами 5. Каждый щеткодержатель может содержать несколько щеток, соединенных параллельно.

Щеткодержатели имеют отверстия для их крепления на шпильках щеткодержателей, которые, в свою очередь, прикреплены к коромыслу щетки и изолированы от него токопроводящими шайбами ​​и втулками. Количество щеткодержателей обычно равно количеству полюсов. Коромысло устанавливается на торцевом щите малой и средней машины или устанавливается на раму большой машины.Коромысло качения можно поворачивать для изменения положения щеток относительно полюсов. Обычно его удерживают в таком положении, чтобы щетки были выровнены с осями полюсов основного поля.

:

.Электрогенератор

- конструкция, работа, типы и его применение

Электрогенератор был изобретен до того, как была обнаружена корреляция между электричеством и магнетизмом. Эти генераторы используют электростатические принципы для работы с помощью пластин, движущихся лент, которые заряжаются электрически, а также дисков, переносящих заряд к электроду с высоким потенциалом. Генераторы используют два механизма для генерации заряда, такие как трибоэлектрический эффект, иначе электростатическая индукция.Таким образом, он генерирует низкий ток, а также очень высокое напряжение из-за сложности изолирующих машин, а также их неэффективности. Номинальная мощность электростатических генераторов низкая, поэтому они никогда не использовались для выработки электроэнергии. На практике этот генератор используется для питания рентгеновских трубок, а также ускорителей атомных частиц.

Что такое электрический генератор?

Альтернативное название электрического генератора - динамо-машина для передачи, а также распределения энергии по линиям электропередачи для различных приложений, таких как домашнее, промышленное, коммерческое и т. Д.Они также применимы в самолетах, автомобилях, поездах, кораблях для выработки электроэнергии. Для электрического генератора механическая мощность может быть получена через вращающийся вал, который эквивалентен крутящему моменту вала, который умножается с использованием угловой скорости или скорости вращения.

Механическая энергия может быть получена с помощью различных источников, таких как гидравлические турбины на водопадах / плотинах; паровые турбины, газовые турбины и ветряные турбины, где пар может генерироваться за счет тепла от воспламенения ископаемого топлива, иначе - за счет ядерного деления.Газовые турбины могут сжигать газ непосредственно внутри турбины, в противном случае - дизельные двигатели и бензин. Конструкция генератора, а также его скорость могут изменяться в зависимости от характеристик механического первичного двигателя.

Генератор - это машина, преобразующая механическую энергию в электрическую. Он работает по принципу закона электромагнитной индукции Фарадея. Закон Фарадея гласит, что всякий раз, когда проводник помещается в переменное магнитное поле, индуцируется ЭДС, и эта индуцированная ЭДС равна скорости изменения потоковых связей.Эта ЭДС может возникать при изменении относительного пространства или относительного времени между проводником и магнитным полем. Итак, важными элементами генератора являются:

  • Магнитное поле
  • Движение проводника в магнитном поле
Характеристики

Основные характеристики электрических генераторов включают следующее.

Мощность

Выходная мощность электрогенератора находится в широком диапазоне.Выбрав идеальный генератор, можно легко удовлетворить требования высокой и низкой мощности за счет одинаковой выходной мощности.

Топливо

Для электрогенераторов доступны несколько вариантов топлива, таких как бензин, дизельное топливо, сжиженный нефтяной газ, природный газ.

Портативность

Электрические генераторы портативны, потому что они имеют ручки и колеса. Таким образом, их можно легко перемещать из одного места в другое.

Шум

Некоторые генераторы включают технологию шумоподавления, чтобы снизить шумовое загрязнение.

Конструкция электрогенератора

Конструкция электрогенератора может быть выполнена с использованием различных частей, таких как генератор переменного тока, топливная система, регулятор напряжения, система охлаждения и выпуска, система смазки, зарядное устройство, панель управления, рама или основной узел.

Генератор

Преобразование энергии, которое происходит в генераторе, известно как генератор переменного тока. Это включает в себя как неподвижные, так и движущиеся части, которые работают вместе, чтобы генерировать электромагнитное поле, а также поток электронов для выработки электричества.

Топливная система

Топливная система в генераторе используется для выработки необходимой энергии. Эта система состоит из топливного насоса, топливного бака, возвратного патрубка и патрубка, который используется для соединения двигателя и бака. Топливный фильтр используется для удаления мусора до того, как он достигнет двигателя, а форсунка заставляет топливо течь в камеру сгорания.

Двигатель

Основная функция двигателя - подавать электроэнергию в генератор. Диапазон мощности, вырабатываемой генератором, может определяться мощностью двигателя.

Регулятор напряжения

Этот компонент используется для управления напряжением вырабатываемого электричества. При необходимости он также преобразует электричество переменного тока в постоянный.

Системы охлаждения и выхлопа

Обычно генераторы выделяют много тепла, поэтому для уменьшения тепла от перегрева машины используется система охлаждения. Выхлопная система используется для устранения дыма во время ее работы.

Система смазки

В генераторе есть несколько небольших, а также движущихся частей, которые необходимы для их достаточной смазки с использованием моторного масла, чтобы обеспечить плавную работу, а также защитить от чрезмерного износа.Уровни смазки следует часто проверять каждые 8 ​​часов процесса.

Зарядное устройство для аккумуляторов

Аккумуляторы в основном используются для питания генератора. Это полностью автоматический компонент, используемый для обеспечения готовности аккумулятора к работе в случае необходимости, обеспечивая его стабильным низким напряжением.

Панель управления

Панель управления используется для управления всеми функциями генератора во время работы от начала до конца. Современные устройства способны определять, когда генератор автоматически включается / выключается.

Рама / основной узел

Рама - это корпус генератора, и это часть, в которой конструкция удерживает все на месте.

Работа электрогенератора

Генераторы в основном представляют собой катушки электрических проводников, обычно медных проводов, которые плотно намотаны на металлический сердечник и установлены с возможностью поворота внутри экспоната из больших магнитов. Электрический проводник движется через магнитное поле, магнетизм будет взаимодействовать с электронами в проводнике, чтобы вызвать в нем поток электрического тока.

Электрический генератор

Катушка проводника и ее сердечник называются якорем, соединяя якорь с валом механического источника энергии, например двигателя, медный проводник может вращаться с исключительно повышенной скоростью по отношению к магнитному полю.

Точка, когда якорь генератора сначала начинает вращаться, а затем в железных полюсных наконечниках возникает слабое магнитное поле. Когда якорь поворачивается, он начинает повышать напряжение. Часть этого напряжения подается на обмотки возбуждения через регулятор генератора.Это впечатляющее напряжение создает более сильный ток обмотки, увеличивает силу магнитного поля.

Расширенное поле создает большее напряжение в якоре. Это, в свою очередь, увеличивает ток в обмотках возбуждения, что приводит к более высокому напряжению якоря. В это время признаки обуви зависели от направления протекания тока в обмотке возбуждения. Противоположные знаки заставят ток течь в неправильном направлении.

Как электрический генератор вырабатывает электричество?

На самом деле электрические генераторы не производят электричество; вместо создания они меняют энергию с механической на электрическую или с химической на электрическую.Это преобразование энергии может быть выполнено путем захвата энергии движения и преобразования ее в электрическую форму путем выталкивания электронов из внешнего источника с помощью электрической цепи. Электрогенератор в основном работает в обратном направлении от двигателя.

Некоторые генераторы, которые используются на плотине Гувера, будут обеспечивать огромное количество энергии за счет передачи энергии, создаваемой турбинами. Генераторы, которые используются в коммерческих и жилых помещениях, очень малы по размеру, но для выработки механической энергии они зависят от различных источников топлива, таких как газ, дизельное топливо, а также пропан.

Эту мощность можно использовать в цепи для индукции тока.
После того, как этот ток создан, он направляется с помощью медных проводов для питания внешних устройств, иначе машин целых электрических систем.

Существующие генераторы используют принцип электромагнитной индукции Майкла Фарадея, потому что он обнаружил, что когда проводник вращается в магнитном поле, могут образовываться электрические заряды для создания потока тока. Электрический генератор связан с тем, как водяной насос нагнетает воду по трубе.

Типы электрогенераторов

Генераторы классифицируются по типам.

  • Генераторы переменного тока
  • Генераторы постоянного тока
Генераторы переменного тока

Их также называют генераторами переменного тока. Это наиболее важный способ производства электроэнергии во многих местах, поскольку в настоящее время все потребители используют переменный ток. Он работает по принципу электромагнитной индукции. Они бывают двух типов: индукционный генератор и синхронный генератор.

Индукционный генератор не требует отдельного возбуждения постоянного тока, регулятора, регулятора частоты или регулятора. Эта концепция имеет место, когда катушки проводника вращаются в магнитном поле, возбуждая ток и напряжение. Генераторы должны работать с постоянной скоростью, чтобы обеспечить стабильное напряжение переменного тока даже при отсутствии нагрузки.

Генератор переменного тока

Синхронные генераторы - это генераторы большого размера, которые в основном используются на электростанциях. Это может быть тип вращающегося поля или тип вращающегося якоря.У вращающегося якоря якорь находится у ротора, а поле у ​​статора. Ток якоря ротора снимается через контактные кольца и щетки. Они ограничены из-за высоких ветровых потерь. Они используются для приложений с низкой выходной мощностью. Генератор переменного тока с вращающимся полем широко используется из-за его высокой мощности выработки и отсутствия контактных колец и щеток.

Это могут быть трехфазные или двухфазные генераторы. Двухфазный генератор вырабатывает два совершенно разных напряжения.Каждое напряжение можно рассматривать как однофазное напряжение. Каждый из них генерирует напряжение совершенно независимо от другого. Трехфазный генератор переменного тока имеет три однофазные обмотки, разнесенные таким образом, что напряжение, индуцированное в одной фазе, смещается на 120º относительно двух других.

Могут быть подключены как треугольником, так и звездой. В Delta Connection каждый конец катушки соединен вместе, образуя замкнутый контур. Дельта-соединение выглядит как греческая буква «Дельта» (Δ). При соединении звездой один конец каждой катушки соединен вместе, а другой конец каждой катушки оставлен открытым для внешних соединений.Соединение "звезда" обозначается буквой Y.

Эти генераторы комплектуются двигателем или турбиной, которые используются в качестве мотор-генераторной установки и используются в таких приложениях, как военно-морские силы, добыча нефти и газа, горное оборудование, ветряные электростанции и т. Д.

Преимущества

К преимуществам генераторов переменного тока можно отнести следующее.

  • Эти генераторы обычно не требуют обслуживания из-за отсутствия щеток.
  • Легко повышать и понижать через трансформаторы.
  • Размер линии передачи может быть меньше из-за функции повышения
  • Размер генератора относительно меньше, чем у машины постоянного тока
  • Потери относительно меньше, чем у машины постоянного тока
  • Эти выключатели генератора относительно меньше, чем выключатели постоянного тока

Генераторы постоянного тока

Генераторы постоянного тока обычно используются в автономных системах. Эти генераторы обеспечивают бесперебойную подачу электроэнергии непосредственно в накопители электроэнергии и электрические сети постоянного тока без использования нового оборудования.Сохраненная мощность передается нагрузкам через преобразователи постоянного тока в переменный. Генераторами постоянного тока можно было управлять обратно на неподвижную скорость, так как аккумуляторы, как правило, стимулируют восстановление значительно большего количества топлива.

Генератор постоянного тока
Классификация генераторов постоянного тока

Генераторы постоянного тока классифицируются в зависимости от того, как их магнитное поле создается в статоре машины.

  • Генераторы постоянного тока с постоянным магнитом
  • Генераторы постоянного тока с раздельным возбуждением и
  • Генераторы постоянного тока с самовозбуждением.

Генераторы постоянного тока с постоянными магнитами не требуют возбуждения внешнего поля, поскольку они имеют постоянные магниты для создания потока. Они используются для приложений с низким энергопотреблением, таких как динамо-машины. Генераторы постоянного тока с раздельным возбуждением требуют возбуждения внешнего поля для создания магнитного потока. Мы также можем варьировать возбуждение, чтобы получить переменную выходную мощность.

Используются для гальваники и электрорафинирования. Из-за остаточного магнетизма, присутствующего в полюсах статора, генераторы постоянного тока с самовозбуждением могут создавать собственное магнитное поле после запуска.Они просты по конструкции и не нуждаются во внешней цепи для изменения возбуждения поля. Эти самовозбуждающиеся генераторы постоянного тока снова подразделяются на шунтовые, последовательные и составные генераторы.

Они используются в таких приложениях, как зарядка аккумуляторов, сварка, обычное освещение и т. Д.

Преимущества

К преимуществам генератора постоянного тока относятся следующие.

  • В основном машины постоянного тока обладают большим разнообразием рабочих характеристик, которые могут быть получены путем выбора метода возбуждения обмоток возбуждения.
  • Выходное напряжение можно сгладить, регулярно располагая катушки вокруг якоря. Это приводит к меньшему количеству колебаний, что желательно для некоторых приложений в установившемся режиме.
  • Нет необходимости в экранировании излучения, поэтому стоимость кабеля будет ниже по сравнению с кабелем переменного тока.

Другие типы электрических генераторов

Генераторы подразделяются на различные типы, такие как переносные, резервные и инверторные.

Переносной генератор

Они широко используются в различных приложениях и доступны в различных конфигурациях с изменением мощности.Они полезны при обычных бедствиях после выхода из строя электросети. Они используются в жилых, небольших коммерческих учреждениях, таких как магазины, торговые точки, на стройплощадках, чтобы обеспечивать электроэнергией небольшие инструменты, свадьбы на открытом воздухе, кемпинг, мероприятия на открытом воздухе и обеспечивать питание сельскохозяйственных устройств, таких как скважины, или системы капельного орошения.

Генераторы этого типа работают на дизельном топливе, в противном случае - на газе, для обеспечения кратковременной электроэнергии. Основные характеристики портативного генератора:

  • Он проводит электричество с помощью двигателя внутреннего сгорания.
  • Может подключаться к разным инструментам и приборам через розетки.
  • Может быть подключен к субпанелям.
  • Применяется в отдаленных районах.
  • Он потребляет меньше энергии для работы морозильной камеры, телевизора и холодильника.
  • Скорость двигателя должна быть 3600 об / мин, чтобы выдавать типичный ток с частотой 60 Гц.
  • Обороты двигателя можно контролировать с помощью оператора.
  • Он обеспечивает питание осветительных приборов, а также инструменты.
Инверторный генератор

В этом типе генератора используется двигатель, подключенный к генератору переменного тока для выработки электроэнергии переменного тока. выпрямитель для преобразования переменного тока в постоянный.Они используются в холодильниках, кондиционерах, лодочных автомобилях, которые требуют значений определенной частоты, а также напряжения. Они доступны в менее тяжелых и твердых. Характеристики этого генератора в основном включают следующее.

  • Это зависит от современных магнитов.
  • Использует более высокие электронные схемы.
  • Он использует 3 фазы для производства электроэнергии.
  • Обеспечивает стабильную подачу тока на устройство.
  • Он энергоэффективен, поскольку скорость двигателя регулируется в зависимости от требуемой мощности.
  • Когда он используется с подходящим устройством, его переменный ток может быть установлен на любое напряжение и частоту.
  • Они легкие и используются в автомобиле, лодке и т. Д.
Резервный генератор

Это один из видов электрической системы, которая используется для работы через автоматический переключатель резерва, который дает сигнал для включения устройства. потеря. К лучшим характеристикам резервного генератора можно отнести следующее.

  • Операция может выполняться автоматически.
  • Используется в системах безопасности для резервного освещения, лифтов, оборудования жизнеобеспечения, медицинских и противопожарных систем.
  • Обеспечивает стабильную защиту электропитания.
  • Постоянно контролирует энергоснабжение.
  • Каждую неделю автоматически выполняет самотестирование, чтобы проверить, правильно ли реагирует или нет на потерю электропитания.
  • Он состоит из двух компонентов, таких как автоматический переключатель и резервный генератор.
  • Он обнаруживает потерю мощности за секунды и усиливает электричество.
  • Он работает с использованием природного газа или жидкого пропана.
  • Внутри используется двигатель внутреннего сгорания.
Промышленные генераторы

Промышленные генераторы отличаются от коммерческих и жилых помещений. Они прочные и прочные, которые работают в суровых условиях. Характеристики источника питания будут варьироваться от 20 кВт до 2500 кВт, 120-48 В и от 1-фазного до 3-х фазного питания.

Обычно они более индивидуализированы по сравнению с другими типами. Классификация этих генераторов может быть сделана на основе топлива, используемого для работы двигателя, чтобы можно было вырабатывать электроэнергию.В качестве топлива используется природный газ, дизельное топливо, бензин, пропан и керосин.

Индукционные генераторы

Эти генераторы бывают двух типов, например, с самовозбуждением и с внешним возбуждением. Самовозбуждающиеся используются в ветряных мельницах, где ветер используется как нетрадиционный источник энергии, преобразующийся в электрическую энергию. Внешнее возбуждение используется в приложениях с рекуперативным торможением, таких как краны, подъемники, электровозы и лифты.

Техническое обслуживание электрогенератора

Техническое обслуживание электрогенератора практически аналогично всем типам двигателей.Для каждого производителя очень важно знать, как обслуживаются все генераторы. Обычное обслуживание - это общий осмотр, такой как проверка на утечки, уровни охлаждающей жидкости, проверка шлангов и ремней, кабелей и клемм аккумулятора. Важно проверять масло, чтобы его часто менять. Частота замены масла в основном зависит от производителя, от того, как часто оно используется. Если в генераторе используется дизельное топливо, необходимо заменить масло на 100 часов работы.

Раз в год фильтрация и очистка топлива очень быстро ухудшают качество дизельного топлива.После нескольких дней эксплуатации это топливо может разлагаться из-за загрязнения воды и микробов, что приводит к засорению топливопроводов, а также фильтров. При очистке топлива используются биоциды в год во всех типах генераторов, кроме резервного генератора, где он будет притягивать сырость.

Систему охлаждения следует обслуживать, потому что она требует проверки уровня охлаждающей жидкости через доступные интервалы во время простоя.

Заряд батареи необходимо проверить, поскольку проблемы с батареей могут вызвать сбои.Регулярное тестирование необходимо для определения текущего состояния батареи. Он включает в себя проверку уровней электролита, а также точную плотность электрических батарей.

Также очень важно отключать генератор на 30 минут еженедельно под нагрузкой. Удалите излишки влаги, смажьте двигатель и отфильтруйте топливо, а также фольгу. Если какие-либо подвижные части, найденные где-либо на генераторе, должны быть стабильно размещены внутри.

Для дальнейшего осмотра необходимо вести записи, чтобы знать состояние вашего генератора.

Приложения

К применениям электрогенераторов относятся следующие.

  • В разных городах генераторы обеспечивают питание большинства электросетей
  • Они используются на транспорте
  • Малые генераторы обеспечивают отличную поддержку для удовлетворения потребностей в электроэнергии в домашних условиях, в противном случае малые предприятия
  • Они используются для привода электродвигателей
  • Используются перед подачей электроэнергии на строительных площадках.
  • Используются в лабораториях для определения диапазона напряжений.
  • Энергоэффективность, например, можно значительно снизить потребление топлива
Недостатки

Главный недостаток - они не могут остановить сильные колебания напряжения, по этой причине, обычные. генераторы не подходят для работы с потребителями, чувствительными к напряжению, такими как ПК. ноутбуки, телевизоры или музыкальные системы, потому что они могут повредить их в плохом случае.

Итак, это обзор электрогенератора.Электрогенератор работает по принципу электромагнитной индукции. Этот принцип был открыт Майклом Фарадеем. В основном генераторы представляют собой катушки с электрическими проводниками или медную проволоку. Этот провод плотно наматывается на металлический сердечник и помещается примерно так, чтобы вращаться в экспонате из больших магнитов.

Электрический проводник вращается в магнитном поле, и магнетизм соединяется через электроны внутри проводника, вызывая в нем ток. Здесь катушка проводника, а также ее сердечник называются якорем.Он подключен к валу источника питания. Теперь вы четко разобрались в принципах работы и типах генераторов. Кроме того, любые дополнительные вопросы по этой теме или по электрическим и электронным проектам оставляйте комментарии ниже.

Электрогенератор Источник изображения: альтернативный вариант

.

8.1. Принцип работы и конструкция генератора постоянного тока

Самый простой генератор - петля из проволоки. вращающийся в магнитном поле между полюсами Н и S, как показано на рис. 4.1. Изменяющаяся во времени переменная ЭДС, индуцированная в петля заставляет переменный ток течь через контактные кольца и щетки в цепь внешней нагрузки. Такая машина представляет собой генератор переменного тока.

Преобразование переменного тока в постоянный осуществляется через использование коммутатора с разъемным кольцом. Коммутатор, изображенный на Рис. 8.1 a

имеет два медных сегмента 4 подключено к концам 1 петли. Коммутаторные сегменты закреплены на валу якоря и изолированы друг от друга и с вала. Щетки стационарные 2 и 3 подключен к внешней цепи отдыха на коммутаторе и сдвиньте по его поверхности.

Когда вал несет петлю из проволоки и сегменты начинают вращаться, щетки 2 и 3 попеременно свяжитесь с каждым сегментом. Щетки фиксируются в таком положении, чтобы они охватывают промежутки между сегментами в тот момент, когда наведенная в петля нулевая. В этом случае при вращении якоря переменная ЭДС, наведенная в контуре, изменяется синусоидально, если поле однородно, но каждая из кистей соприкасается с этим отрезка и, таким образом, с тем концом проводника, который на данном момент находится под полюсом определенной полярности.

Следовательно, ЭДС на щетках 2 и 3 делает не меняет знак, и ток течет в одном направлении от щетки 2, через внешнее сопротивление R, и чистить щеткой 3. Но так как ЭДС во внешнем цепь не постоянна, а изменяется со временем пульсирующим образом, эта волна пульсирующей ЭДС создаст пульсирующий ток.

Если намотать арматуру двумя петлями из проволоки, расположены под углом 90 ° друг к другу, и соединяют концы шлейфов к четырем сегментам коммутатора, пульсации ЭДС и ток во внешней цепи станет намного меньше.Используя много витков провода вокруг якоря и много сегментов коммутатора, развивается ЭДС и ток будет плавным и практически постоянный.

Рисунок 8.1b - вид в разрезе постоянного тока. генератор. Стационарный элемент, статор, служит для установки магнитное поле, а вращающийся элемент, ротор, является якорем предназначен для генерации ЭДС.

Статор, изображенный на рис. 8.2а, состоит из рамы 3, или ярмо, полюса главного поля 1, и коммутирующие (промежуточные) опоры поля 2. Главный полюс, показанный на рис. 8.2b представляет собой электромагнит, создающий магнитный поток. Он состоит из ядра 4, поле катушка 6, и башмак 7.

Основной столб крепится к раме 3 с болтом 5. Сердечник полюса отлит из стали и в поперечном сечении имеет овальную форму. Катушка возбуждения состоит из множества витки изолированного медного провода, намотанного на жилу. Катушки всего полюса соединены последовательно, образуя обмотку возбуждения.Электрический ток протекающий через обмотку создает магнитный поток. Башмак закрепляет катушку возбуждения на сердечнике и обеспечивает равномерное распределение магнитного потока под полюс. Ему придается такая форма, что воздушный зазор между полюсом и якорем одинакова по всей длине полюсной дуги. Коммутирующий полюса или межполюсники также несут катушки на своих сердечниках. Интерполы закреплен между основными полюсами; их количество может быть равно или наполовину количество основных полюсов.Они установлены на

мощные машины для устранения искрения на щетках. Машины малой мощности обычно не имеют межполюсников.

Рама отлита из стали и служит механическим каркасом * для машина. Он поддерживает основные и коммутационные полюса закрепленными. на внутренней стороне, а также несет на своих концах концевые раструбы или торцевые рамы с подшипниками, в которых вращается вал машины. Рама изготовлена ​​на литых ножках для установки машины на поддерживает.

Якорь, показанный на рис. 8.3а, состоит из сердечника 1 , обмотка 2, и коммутатор 3. Сердечник якоря представляет собой цилиндр из электротехнической листовой стали. ламинаты, изолированные друг от друга лопаткой или бумагой, снизить вихретоковые потери. Стальные листы перфорированы до шаблон и снабжены пазами для проводов обмотки якоря. В сердечнике якоря выполнены вентиляционные каналы для удержания якоря. прохладный. Обмотка тщательно изолирована от сердечника и закреплена. в пазах немагнитными клиньями.Концевые соединения крепится к опорным кольцам тесьмой. Все катушки обмотки, установленные на якорь, соединены последовательно, образуя замкнутая цепь и припаяна к сегментам коммутатора.

Коммутатор представляет собой цилиндр, состоящий из стержни коммутатора, представляющие собой клиновидные (ласточкин хвост) сегменты жесткая медь с изоляцией друг от друга и от коммутатора рукав тонкими полосками миканита. Каждая штанга коммутатора удерживается в поместите, зажимая его часть в форме ласточкина хвоста между V-образным выступы на втулке и кольце, последнее прикручено к втулку винтами с головкой под ключ.

Коммутатор - самая сложная деталь с точки зрения конструкции. Кроме того, в некоторых отношениях это самая важная часть постоянного тока. машина. Поверхность коллектора должна быть точно цилиндрической, чтобы избегайте раскачивания и искрения на щетках.

Щетки, которые собирают ток и передают его внешний контур «может быть выполнен из графита, углеграфита и бронзово-графитовые типы. В высоковольтных машинах используются графитовые щетки. обладающие высоким контактным сопротивлением; низковольтные машины работают с бронзово-графитовыми кистями.На рис. 8.3b показан щеткодержатель. Щетка 4 вставлена в коробку щеток удерживается на поверхности коллектора с помощью пружины 5. Каждая щеткодержатель может содержать несколько щеток, соединенных параллельно.

Держатели щеток имеют отверстия для крепления на шпильках держателей щеток. которые, в свою очередь, прикреплены к коромысле щетки и изолированы от него токопроводящими шайбами ​​и гильзами. Количество кисти держателей обычно равно количеству полюсов. Коромысло устанавливается на торцевой щит малой и средней машины или устанавливается на рама большой машины.Коромысло можно качнуть, чтобы изменить положение щеток относительно столбов. Обычно проводится в такое положение, чтобы кисти могли быть выровнены с оси основных полюсов поля.

.

Смотрите также