Принцип работы и устройство тнвд


виды, устройство и принцип работы

Основной задачей топливного насоса высокого давления (ТНВД) является подача топлива к форсункам двигателя. В современном автомобилестроении он устанавливается для питания как бензиновых, так и дизельных моторов. Особенностью работы такого насоса является способность выполнять максимально точную дозировку горючего и подавать его в строго определенный момент времени.

ТНВД на бензиновом и дизельном двигателе

Изначально насосы, обеспечивающие высокое давление, использовались исключительно для питания дизельных моторов. В бензиновых системах такая конструкция получила применение только в ДВС с непосредственным впрыском, где наиболее важны давление и точность подачи.

Насосы высокого давления имеют крайне сложную конструкцию, работают с повышенными нагрузками и требуют бережной эксплуатации. Важную роль играет качество топлива и отсутствие в нем примесей воды и абразивных частиц (например, пыли). При использовании ТНВД на бензиновом двигателе нагрузка меньше, чем на дизеле, что относительно продлевает срок его службы.

Располагается насос высокого давления в подкапотном пространстве в непосредственной близости от мотора (либо может устанавливаться на двигатель). Для его питания используется дополнительный подкачивающий топливный насос низкого давления. В зависимости от марки и категории автомобиля могут применяться различные типы ТНВД.

ТНВД разных конструкций и основные узлы

Главным рабочим механизмом насоса является плунжерная пара. Она состоит из плунжера (поршня) и втулки (гильзы). При перемещении поршня в гильзе формируется очень высокое давление, а потому для обеспечения безопасности и корректной работы пары, детали должны иметь высокую точность изготовления.

В силу этой особенности плунжерная пара в профессиональной сфере получила наименование прецизионная. Принцип работы плунжерной пары прост: поршень выполняет возвратно-поступательные движения внутри втулки и обеспечивает всасывание, сжатие и подачу топлива в надплунжерное пространство.

Классификация и устройство ТНВД

Топливные насосы высокого давления классифицируются по ряду признаков. Прежде всего их разделяют по типу привода плунжеров: механические, пневматические и гидравлические системы. Их, в свою очередь, группируют как механизмы непосредственного действия и аккумуляторные.

В первом случае процессы нагнетания и впрыска рабочей жидкости происходят одновременно под действием плунжеров с механическим приводом. В конструкциях с аккумуляторным впрыском рабочие плунжеры приводятся в действие за счет двигателя посредством приводного вала.

Системы с механическим приводом в современном автомобилестроении применяются редко, поскольку они не обеспечивают необходимого уровня экологической безопасности.

По числу плунжеров топливные насосы высокого давления разделяются на многоплунжерные и распределительные.

Многоплунжерные ТНВД и особенности их конструкции

Топливный насос высокого давления (ТНВД): виды, устройство, принцип работы

Топливный насос (сокращенно ТНВД) предназначен для выполнения следующих функций -  подачи горючей смеси под высоким давлением в топливную систему ДВС, а также регулирования его впрыска в определенные моменты. Именно поэтому топливный насос считается наиболее важным устройством для дизельных и бензиновых двигателей.

Преимущественно ТНВД применяются, конечно же, в дизельных двигателях. А в бензиновых двигателях ТНВД встречаются лишь в тех агрегатах, на которых используется система непосредственного впрыска топлива. При этом насос в бензиновом двигателе работает куда с меньшей нагрузкой, поскольку такое высокое давление, как в дизеле не требуется.

Основные конструктивные элементы топливного насоса - плунжер (поршень) и цилиндр (втулка) малого размера, которые объединяются в единую плунжерную систему (пару), изготовленную из высокопрочной стали с большой точностью.

На самом деле изготовление плунжерной пары довольно трудная задача, требующая специальных высокоточных станков. На весь Советский союз был, если не изменяет память, всего один завод, на котором изготавливались плунжерные пары.

Как делают плунжерные пары в нашей стране сегодня можно увидеть в этом видео:

Между плунжерной парой предусматривается очень маленький зазор, так называемое прецизионное сопряжение. Это отлично показано в видео, когда плунжер очень плавно, с зависанием под действием собственного веса входит в цилиндр.

Итак, как мы уже сказали ранее, топливный насос применяется не только для своевременной подачи горючей смеси в топливную систему, но и для распределения его через форсунки в цилиндры в соответствии с типом двигателя.

Форсунки – связующее звено в этой цепи, поэтому они соединены с насосом трубопроводами. С камерой сгорания форсунки соединяются нижней распылительной частью, оснащенной небольшими отверстиями для эффективного впрыска топлива с дальнейшим его воспламенением.  Определить точный момент впрыска ТС в камеру сгорания позволяет угол опережения.

Типы топливных насосов

В зависимости от особенностей конструкции различают три основных типа ТНВД – распределительный, рядный, магистральный.

Рядный ТНВД

Этот тип топливного насоса высокого давления оснащается плунжерными парами, расположенными рядом друг с другом (потому и такое название). Их количество строго соответствует количеству рабочих цилиндров двигателя.

Таким образом, одна плунжерная пара обеспечивает подачу топлива в один цилиндр.

Пары устанавливаются в насосном корпусе, в котором предусмотрены каналы входа и выхода. Запускается плунжер при помощи кулачкового вала, соединенного, в свою очередь, с коленвалом, от которого и передается вращение.

Кулачковый вал насоса, при вращении кулачками воздействует на толкатели плунжеров, заставляя их двигаться внутри втулок насоса. При этом поочередно открываются и закрываются впускные и выпускные отверстия. При движении плунжера вверх по втулке создается давление, необходимое для открывания нагнетательного клапана, через который топливо под давлением направляется по топливопроводу к определенной форсунке.

Момент подачи топлива и регулировка его количества, необходимого в конкретный момент времени может осуществляться либо с помощью механического устройства, либо с помощью электроники. Такая регулировка нужна для корректировки подачи топлива в цилиндры двигателя в зависимости от частоты вращения коленчатого вала (оборотов двигателя).

Механическое управление обеспечивается за счет использования специальной муфты центробежного типа, которая закреплена на кулачковом валу. Принцип действия такой муфты заключен в грузиках, которые находятся внутри муфты и имеют возможность перемещаться под действием центробежной силы.

Центробежная сила изменяется с ростом (или уменьшением) величины оборотов двигателя, благодаря чему грузики либо расходятся к внешним краям муфты, либо снова сближаются к оси. Это приводит к смещению кулачкового вала относительно привода из-за чего и изменяется режим работы плунжеров и, соответственно, при увеличении частоты вращения коленвала двигателя обеспечивается ранний впрыск топлива, а поздний, как вы догадались, при снижении оборотов.

Рядные топливные насосы весьма надежны. Их смазка осуществляется моторным маслом, поступающим из системы смазки двигателя. Они совершенно не привередливы к качеству топлива. На сегодняшний день применение таких насосов из-за их громоздкости ограничено грузовыми автомобилями средней и большой грузоподъемности. Примерно до 2000 года они применялись и на легковых дизельных моторах.

Распределительный ТНВД

В отличие от рядного насоса высокого давления, у распределительного ТНВД может быть либо один, либо два плунжера в зависимости от объема двигателя и, соответственно, необходимого объема топлива.

И эти один или два плунжера обслуживают все цилиндры двигателя, которых может быть и 4, и 6, и 8, и 12. Благодаря своей конструкции, в сравнении с рядными ТНВД, распределительный насос более компактен и меньше весит, и при этом способен обеспечить более равномерную подачу топлива.

К основному недостатку данного типа насосов можно отнести их относительную недолговечность. Распределительные насосы устанавливаются только в легковые автомобили.

Распределительный ТНВД может оснащаться различными типами приводов плунжера. Все эти типы привода являются кулачковыми и бывают: торцевыми, внутренними, внешними.

Наиболее эффективными считаются торцевые и внутренние приводы, которые лишены нагрузок, создаваемых давлением топлива на приводной вал, вследствие чего они служат несколько дольше, нежели насосы с внешним кулачковым приводом.

Кстати, стоит отметить, что импортные насосы фирм Bosch и Lucas, наиболее часто использующиеся в автомобилестроении оснащены именно торцевым и внутренним приводом, а внешний привод имеют насосы серии НД отечественного производства.

Торцевой кулачковый привод

В этом типе привода, используемом в насосах Bosch VE, основным элементом является распределительный плунжер, предназначенный для создания давления и распределения топлива в топливных цилиндрах. При этом плунжер-распределитель совершает вращательные и возвратно-поступательные перемещения при вращательных движениях кулачковой шайбы.

Возвратно-поступательное перемещение плунжера осуществляется одновременно с вращением кулачковой шайбы, которая, опираясь на ролики, перемещается вдоль неподвижного кольца по радиусу, то есть, как бы обегает его.

Воздействие шайбы на плунжер обеспечивает высокое давление топлива. Возврат плунжера в исходное состояние осуществляется благодаря пружинному механизму.

Распределение топлива в цилиндрах происходит за счет того, что приводной вал обеспечивает вращательные движения плунжера.

Величина подачи топлива может быть обеспечена с помощью электронного (электромагнитный клапан) или механического (центробежная муфта) устройства. Регулировка осуществляется за счет поворота на определенный угол неподвижного (не вращающегося), регулировочного кольца.

Цикл работы насоса состоит из следующих стадий: закачка порции топлива в надплунжерное пространство, нагнетание давления за счет сжатия и распределение топлива по цилиндрам. Затем плунжер возвращается в исходное положение и цикл повторяется заново.

Внутренний кулачковый привод

Внутренний привод применяется в распределительных ТНВД роторного типа, например, в насосах Bosch VR, Lucas DPS, Lucas DPC. В таком типе насоса подача и распределение топлива осуществляется посредством двух устройств: плунжера и распределительной головки.

Распределительный вал оснащается двумя противоположно-расположенными плунжерами, которые обеспечивают процесс нагнетания топлива, чем меньше расстояние между ними, тем выше давление топлива. После нагнетания давления топливо устремляется к форсункам по каналам распредголовки через нагнетательные клапана.

Подачу топлива к плунжерам обеспечивает специальный подкачивающий насос, который может отличаться в зависимости от типа своей конструкции. Это может быть либо шестеренчатый насос, либо роторно-лопастной. Подкачивающий насос находится в корпусе насоса и приводится в действие приводным валом. Собственно, он прямо на этом валу и установлен.

Распределительный насос с внешним приводом рассматривать не будем, поскольку, скорее всего, их звезда близка к закату.

Магистральный ТНВД

Такой вид топливного насоса применяется системе подачи топлива Common Rail, в которой топливо перед тем, как поступить к форсункам сначала накапливается в топливной рампе. Магистральный насос способен обеспечить высокую подачу топлива - свыше 180 МПа.

Магистральный насос может быть одно-, двух- или трехплунжерным. Привод плунжера обеспечивается кулачковой шайбой или валом (тоже кулачковым, разумеется), которые в насосе совершают вращательные движения, проще говоря, крутятся.

При этом в определенном положении кулачков, под действием пружины плунжер перемещается вниз. В этот момент происходит расширение компрессионной камеры, за счет чего в ней снижается давление и образуется разряжение, которое заставляет открыться впускной клапан, через который топливо проходит в камеру.

Поднятие плунжера сопровождается увеличением внутрикамерного давления и закрытием клапана впуска. При достижении давления, на который настроен насос, открывается выпускной клапан, через который топливо нагнетается в рампу.

В магистральном насосе управление процессом подачи топлива реализуется дозирующим топливным клапаном (который приоткрывается или закрывается на необходимую величину) при помощи электроники.

виды топливных насосов высокого давления, и принцип работы топливного насоса

Топливный насос высокого давления имеющий сокращенную аббревиатуру (ТНВД) выполняет следующие основные функции:

- подает топливо под высоким давлением в топливную систему ДВС;

- регулирует моменты впрыска топлива.

Топливный насос относится к наиболее важным устройствам, как бензиновых, так и дизельных двигателей.

ТНВД обычно применяются в дизельных двигателях. В бензиновых двигателях применение ТНВД нецелесообразно, ввиду того, что в нем не требуются такие высокие давления, как в дизельном двигателе.

Можно выделить следующие основные конструктивные элементы топливного насоса:

  1. Плунжер (поршень) + Цилиндр (втулка) = Плунжерная система (пара)

Плунжерная система изготавливается из высокопрочной стали на высокотехнологическом оборудовании (станках), в связи с необходимостью высокой точности.

Всего один завод на все пост Советское пространство изготавливал плунжерные пары. Изготовление плунжерных пар сегодня происходит таким образом.

Если внимательно изучить процесс производства плунжерных пар, то отчетливо видно, что огромное значение уделяют прецизионному сопряжению (зазор между плунжерной парой). Плунжер плавно входит в цилиндр под действием собственного веса.

Как изначально упоминалось, топливный насос служит не только для подачи топлива в топливную систему, но и подает его к форсункам на каждый цилиндр на бензиновом двигателе.

Форсунки являются связующим звеном этой цепи и соединяются с насосом специальными трубопроводами. Для эффективного впрыска топлива форсунки соединяются с нижней распылительной частью с специальными отверстиями для увеличения эффективности впрыска топлива с дальнейшим воспламенением. Момент впрыска топливной смеси в камеру сгорания регулируется углом опережения зажигания.

Типы топливных насосов

Существует три основных типа ТНВД, которые мы с вами рассмотрим:

  1. распределительный;
  2. рядный
  3. магистральный.

Рядный ТНВД

Рядный топливный насос высокого давления оснащен плунжерными парами, которые располагаются друг с другом. Их количество зависит от количества рабочих цилиндров двигателя и соответствует ему. Одна плунжерная пара обеспечивает подачу топлива только для одного цилиндра.

Пары устанавливаются в корпусе насоса, в котором имеются каналы входа и выхода. Плунжер приводится в работу при помощи кулачкового вала, который имеет привод от коленчатого вала.

 

При вращении кулачкового вала топливного насоса, кулачки воздействуют на толкатели плунжеров приводя их в движении внутри втулок насоса. Вследствие впускные и выпускные отверстия начинают последовательно открываться и закрываться. Когда плунжер движется вверх во втулке создается давление, которое приводит к открытию нагнетательного клапана, через который топливо подается к форсунке по топливопроводу. 

Момент подачи топлива регулируется специальным устройством (муфтой центробежного типа). Работа муфты центробежного типа основана на перемещении грузиков под действием центробежной силы.

Центробежная сила изменяется по мере роста (или уменьшения) величины оборотов коленчатого вала двигателя, вследствие чего грузики расходятся к внешним краям муфты, либо сближаются к оси. Происходит смещение кулачкового вала относительно привода, что приводит к изменению работы плунжеров.

Когда обороты коленчатого вала увеличиваются – происходит ранний впрыск топлива, когда уменьшаются – поздний впрыск топлива.

Рядные топливные насосы зарекомендовали себя своей надежностью. Они совсем не привередливы к качеству топлива и смазка ТНВД осуществляется обычным моторным маслом.

Недостатки рядных топливных насосов высокого давления – их размер.

Распределительный ТНВД

Распределительный ТНВД включает в себя один или два плунжера, что зависит от объема двигателя.

 

И эти один или два плунжера работают на все цилиндры двигателя. Таким образом удалось не только обеспечить более равномерную подачу топлива, но и уменьшить габариты топливного насоса высокого давления. Недостатки распределительных ТНВД в их надежности и долговечности.

 

Распределительные ТНВД имеют различные типы привода:

  1. торцевой привод;
  2. внутренний привод;
  3. внешний привод;

Наиболее эффективными себя показали торцевые и внутренние приводы ТНВД, с меньшей нагрузкой.

Кстати, такие импортные насосы, как Bosch, оснащены именно торцевым и внутренним приводом, а внешний привод имеют насосы отечественного производства.

 

Основным элементом в торцевом приводе Bosch является распределительный плунжер, который создает давление и распределяет горючую смесь по цилиндрам. Плунжер распределитель при этом совершает вращательные и возвратно-поступательные перемещения при вращательных движениях кулачковой шайбы.

Плунжер совершает возвратно-поступательно движение одновременно с вращением кулачковой шайбы, которая обегает кольцо. Воздействие шайбы на плунжер обеспечивает высокое давление топлива. Возврат плунжера в начальное положение осуществляется с помощью возвратного механизма.  

Именно вращательное движение плунжера, что приводится от приводного вала, способствует распределению топлива в цилиндрах. Величина подачи топлива обеспечивается с помощью электромагнитного клапана или центробежной муфты.

Работа насоса ТНВД

Работа насоса состоит из нескольких этапов:

  1. Закачка порции топлива в надплунжерное пространство;
  2. Нагнетание давления за счет сжатия и распределение топлива по цилиндрам.
  3. Возвращение плунжера в исходное положение. Повторение цикла работы.
Внутренний кулачковый привод ТНВД

Такой привод топливных насосов применяется в распределительных ТНВД роторного типа, например,  Bosch VR, Lucas DPC. В данном типе ТНВД распределение горючей смеси происходит за счет плунжера и распределительной головки.

 

Распределительный вал оснащается двумя плунжерами, расположенными друг напротив друга, которые нагнетают топливо. Тем выше давление в насосе, чем меньше расстояние между плунжерами. По мере возрастания давления топливо поступает к форсункам через нагнетательные клапана.

Магистральный ТНВД

Магистральный ТНВД используется в известной системе подачи топлива Common Rail. Работа магистрального ТНВД заключается в накапливании топлива в топливной рампе, затем подается на форсунки. Давление в магистральном топливном насосе высокого давления составляет примерно 180 Мпа.

 

Магистральный насос бывает одно-, двух- или трех плунжерным.  Приводится магистральный ТНВД от кулачкового вала.

Когда кулачки воздействуют на плунжер, тот перемещается вниз, происходит расширение компрессионной камеры, давление падает и создается разряжение, которое приводит к открытию впускного клапана, и топливо начинает поступать.

Когда плунжер подымается – давление растет и клапан закрывается. Когда давление достигает необходимой отметки, топливо  через выпускной клапан нагнетается в топливную рампу.

Процесс подачи топлива в магистральном ТНВД регулируется дозирующим топливным клапаном, открытие и закрытие, которого осуществляется с помощью электроники.

Топливный насос высокого давления (ТНВД): что это такое и для чего он нужен,виды,фото

Основной задачей топливного насоса высокого давления (ТНВД) является подача топлива к форсункам двигателя. В современном автомобилестроении он устанавливается для питания как бензиновых, так и дизельных моторов. Особенностью работы такого насоса является способность выполнять максимально точную дозировку горючего и подавать его в строго определенный момент времени.

Содержание статьи

Что такое ТНВД и для чего он нужен?

ТНВД — что это такое в машине? Условно можно сравнить с сердцем человека — узел, обеспечивающий бесперебойную циркуляцию крови (топлива) по организму (топливной системе). На деле назначение блока несколько шире:

  • точное дозирование подаваемого топлива, где величина порции зависит от нагрузки;
  • нагнетание топлива в форсунки;
  • определение момента впрыска горючего в цилиндры.

Преимущество ТНВД перед карбюратором заключается именно в возможности подачи точно отмеренной порции топливно-воздушной смеси в камеры внутреннего сгорания. Это решение позволяет снизить расход топлива. Насос напрямую связан с коленчатым валом: при разгоне порции увеличиваются, при падении оборотов — уменьшаются.

Так как работа дизельных агрегатов сопряжена с высокими нагрузками, то подача солярки производится под высоким давлением, обеспечивающим полное сгорание. Бензиновые моторы работают при значительно меньшей нагрузке. Поэтому использование топливного насоса целесообразно в системах с прямым впрыском горючего (не имеющих впускного коллектора).

Подводя промежуточный итог, можно сказать: что такое ТНВД в автомобиле — это способ увеличить КПД двигателя, снизить расход потребления топлива.

Виды ТНВД

Существует несколько типов дизельных топливных систем, имеющих разные конструктивные особенности. Это в свою очередь влияет на устройство ТНВД. Так, на дизелях могут использоваться насосы:

  • рядные;
  • распределительные;
  • магистральные.

Несмотря на отличия в конструкции, во всех используется один и тот же основной рабочий узел – плунжерная пара. Именно она обеспечивает нагнетание давления.

Основной рабочий узел

Состоит эта пара из двух частей – поршня (он же плунжер) и гильзы (втулки). Поскольку в узле создается высокое давление, то утечки между составными элементами не допускаются. Поэтому рабочие поверхности поршня и гильзы имеют высокую степень обработки, поэтому не редко пару называют прецизионной.

Плунжерная пара

Суть работы пары построена на возвратно-поступательном перемещении плунжера внутри втулки. При этом посредством каналов или клапанов обеспечивается попадание топлива в надплунжерную полость и отвод его после сжатия.

Работа плунжерной пары

Работает все так: при перемещении поршня вниз открывается канал или клапан подачи (зависит от устройства ТНВД), и топливо закачивается в полость. При передвижении вверх подача прекращается (канал или клапан закрывается) и плунжер начинает сжимать дизтопливо. При достижении определенного значения давления открывается нагнетательный клапан и дизтопливо (уже находящееся в сжатом состоянии) выходит в магистраль, ведущую к форсункам.

В общем, работа самой плунжерной пары очень проста, но существует множество нюансов и особенностей, в том числе и конструктивных, которые влияют на функционирование этого узла. Поэтому принцип работы ТНВД следует рассматривать отдельно по каждому из указанных видов.

Особенности устройства ТНВД двигателя КамАЗ-740

На двигателях КамАЗ-740 устанавливается V-образные топливные насосы высокого давления с углом развала между секциями 75˚ (рис. 3).

В корпусе 1 насоса установлен механизм поворота плунжеров, соединенный с правой и левой рейками. Рейки действуют на поворотные втулки плунжеров, расположенных в два ряда.

Каждая насосная секция в отличие от насосов марки «ЯМЗ» имеет собственный корпус 13, а на толкателе вместо регулировочного винта установлена регулировочная пята 5 определенной толщины.

Принцип действия насосной секции данного ТНВД такой же, как и на дизелях марки «ЯМЗ».

  • К передней крышке ТНВД прикреплен топливоподкачивающий насос с приводом от эксцентрика кулачкового вала через штангу.
  • V-образная форма топливного насоса высокого давления позволила получить более компактную конструкцию насоса с укороченным кулачковым валом, в результате чего стало возможным увеличить его жесткость и повысить давление впрыска до 18 МПа.
  • Прецизионные детали насосов смазываются дизельным топливом, остальные детали включены параллельно в смазочную систему двигателя.
  • ***

Устройство и работа ТНВД распределительного типа

Одноплунжерные ТНВД распределительного типа (рис. 4) нашли применение на легковых автомобилях и тракторах.

Оси приводного вала 1 и плунжера 3 совпадают и вращаются с одинаковой скоростью. Топливоподкачивающий насос 8 установлен на приводном валу и обеспечивает предварительное давление 0,2…0,8 МПа.

Вращающаяся вместе с плунжером кулачковая шайба 6, набегая своим кулачком на ролик 7, перемещает плунжер вправо, и тот совершает ход нагнетания. Пружина 5 прижимает шайбу с плунжером к ролику, который установлен на неподвижной оси.

Для изменения цикловой подачи топлива служит дозатор 4, который управляется рычагом 2 регулятора. При наличии четырех роликов плунжер за один оборот вала обслужит четыре форсунки.

На рис. 5 показана работа распределительного одноплунжерного насоса. Подача топлива начинается с наполнения (рис. 5,а) топливом надплунжерной полости Д через впускное окно В и выточку Г в плунжере 3 при движении плунжера влево (к НМТ). Нагнетательный канал Б в это время через паз А, выточку на плунжере и окно Е соединен с полостью низкого давления.

Плунжер, при нахождении в НМТ, вращаясь, постепенно перекрывает наполнительное окно. Начинается активный ход плунжера (рис. 5,б). Топливо через центральный канал и распределительный паз А плунжера, нагнетательный канал Б корпуса 2 и нагнетательный клапан подается по топливопроводу к форсунке. Активный ход плунжера заканчивается отсечкой топлива через радиальные каналы Ж (рис.

5,в), ранее закрытые дозатором 1.

Цикловая подача топлива изменяется при помощи рычага регулятора, который перемещает дозатор 1 вдоль оси плунжера. При перемещении дозатора вправо активный ход плунжера и цикловая подача увеличиваются.

В насосах распределительного типа (одноплунжерных) меньше прецизионных пар, чем в многоплунжерных насосах. Следовательно, они проще, дешевле, имеют меньшее число регулировок, меньшие габаритные размеры и массу. Однако многоплунжерные насосы секционного типа обладают большим ресурсом (долговечностью), их работа стабильнее, а техническое обслуживание проще.

 

Признаки и причины неисправности

Очень многие автомобилисты интересуются тем, как определить, что топливный насос высокого давления дизельного двигателя вышел из строя или работает с проблемами. Существует ряд признаков, на которые следует обращать внимание:

 

  • проблемный запуск мотора;
  • повышенный расход дизеля;
  • заметные провалы мощности;
  • появление нетипичного шума или сторонних звуков при работе двигателя;
  • высокая дымность выхлопа.

Причины этих явлений могут быть самые разнообразные. Первая и самая распространенная – естественный износ. Расстояние между плунжером и цилиндром увеличивается, начинает образовываться нагар, что, естественно, приводит к перебоям в системе.

Возможна неравномерная подача топлива. Происходит она из-за следующих факторов:

  • истирание металла плунжеров;
  • повышенный износ клапанов или зубчиков на рейке;
  • уменьшение пропускной способности форсунки;
  • физические повреждения втулки.

Явным признаком износа плунжерной пары является «плавание» оборотов на холостом ходу.

Диагностика и ремонт

Определить точную поломку автомобилистам в гаражных условиях практически невозможно. Для диагностики ТНВД необходимы специализированные стенды и опытные механики. Даже если вы сможете демонтировать и разобрать насос, не рекомендуем самостоятельно что-то менять, учитывая высокую стоимость этой детали. Выполняйте ремонт только в специализированных техцентрах. Бывает, что ТНВД полностью исправен, а неполадки в функционирование вносит электронный блок управления. Проблема может быть как в «мозгах» машины, так и в датчиках. Некорректные показания хотя бы с одного из них приведут к неправильному формированию управляющих сигналов.

Чтобы максимально продлить срок службы насоса, рекомендуем использовать только качественное дизтопливо. Обязательно проверяйте состояние топливного фильтра. Если он будет слишком засорен, то даже качественное топливо будет постепенно создавать нагар на стенках втулки.

Не пренебрегайте диагностикой, ведь своевременное обнаружение неполадки позволит сэкономить на ремонте. Дешевле заменить некоторые компоненты в ТНВД, чем покупать полностью новую деталь.

Теперь вы знаете, что ТНВД – это важный агрегат в конструкции дизельных автомобилей. Покупая дешевое горючее, задумайтесь, стоит ли ваша экономия поломки топливного насоса.

Дизельные моторы достаточно давно появились на легковых автомобилях, но их владельцы и мастера до сих пор с недоверием относятся к подобной технике. Бесспорно, на тяге и топливе такое “чудо” выигрывает у бензиновых моторов, но что случается при поломке?

Современные дизельные моторы отличаются одной особенностью – прецизионностью сборки важных деталей и величиной рабочего давления. Обслуживание и ремонт топливной аппаратуры занимает достаточно большой промежуток времени, поэтому невольно возникает вопрос: “А стоит ли оно того?” Наш ответ – да и нет.

У дизельного мотора есть две стороны медали. Первая: возможность использовать чрезвычайно производительный двигатель внутреннего сгорания с уменьшенным расходом топлива. Вторая: потребность внимательно относиться к качеству топлива, намного чаще менять топливный фильтр и сильно переплачивать за ремонт и замену элементов системы в случае их поломки. Если вы все-таки решились на покупку авто с дизельным мотором Common Rail, вам необходимо знать, как проводится ремонт всей системы, в частности – топливного насоса высокого давления.

Общая информацияCommon Rail – система впрыска топлива в цилиндр двигателя под давлением в 1600-1800 бар через единую магистраль. До того, как на рынок появился Common Rail, дизельное топливо, создаваемое ТНВД, попадало непосредственно в форсунку, а после впрыскивалось в цилиндр. Новая система предполагает собой несколько иную цепочку реакции: насос нагнетает топливо – оно попадает в топливную рампу – топливо от рампы по трубам подводится к форсункам. Данная система имеет ряд положительных характеристик, среди которых лучшее распыление, быстрое смешивание с воздухом и полное сгорание. Эти звенья цепи ведут к быстрому повышению эффективности работы ДВС.

Почему нельзя было обойтись без общей топливной рампы? Чтобы ответить себе на этот вопрос, попробуйте надуть до максимального размера воздушный шарик за один присест. Если вы кит, то справитесь без проблем.

Если же вы человек, то придется или очень постараться, или просто сделать несколько вдохов и выдохов. Так и здесь: систему питает небольшой насос высокого давления с малыми потерями на трение, но с возможностью накачать 1600 бар в трубку, называемую топливной рампой.

Еще один важный элемент системы – форсунки. Сейчас два типа: электромагнитные и пьезоэлектрические. Кстати, последние считаются наиболее высокотехнологическими. Завершающий этап – топливо от рампы подается к форсункам, но не запирается в самой рампе, а отводится через сливной канал.Что такое ТНВД?

Топливные насосы бывают 2 типов: роторные или плунжерные. Плунжерный на сегодняшний день более распространен, поскольку у него предельно простой принцип работы, а именно: подпружиненный плунжер двигается внутри стакана, набирая и выталкивая из полости над ним дизтопливо. Перемещается плунжер благодаря кулачковому валу.

Зачастую конструктивно в корпус установлено три плунжера. В полости над плунжером установлены односторонние клапаны на впуск и выпуск. В общем, насос устроен почти как сердце.

Главные изъяны ТНВД: что ломается в первую очередь
Первый и чуть ли не единственный враг всех деталей топливной аппаратуры дизельного двигателя – вода. Если не следить за водой в отстойнике, то в один момент ваш автомобиль потеряет тягу «на низах», а может и во всем диапазоне оборотов – как повезет. Впрочем, справедливости ради нужно сказать, что зачастую качество нашего дизтоплива оставляет желать лучшего, потому даже если каждый день сливать воду из отстойника, но при этом заправляться на подозрительных станциях – результат будет такой же.

Еще один момент, который нужно выделить в самом начале: ни в коем случае нельзя давать работать ТНВД «на сухую» – иными словами, надо исключить пуск двигателя без прокачки топливной системы.
Любая поломка ТНВД так или иначе связана с коррозией или попаданием посторонних частиц на рабочие поверхности. Именно она может стать причиной заклинившего плунжера или односторонних клапанов. К поломкам также можно отнести износ втулок вала в передней крышке корпуса ТНВД. Не редкость – износ сальника вала. Но втулки и сальник – просто мелочи по сравнению с коррозией.

Что делать в случае поломки?

В любом уважающем себя и клиента сервисе перед тем, как лезть в «железо», выполняют компьютерную диагностику двигателя и его систем. Благодаря ей можно локализовать поломку – вернее, приблизительно понять, кто именно стал виновником неправильной работы двигателя. Окончательно убедившись, что это ТНВД, его направляют в ремонтный цех.

Здесь первым делом насос устанавливают на специальный диагностический стенд и подключают к нему все необходимые трубки. Выбрав в меню по номеру детали искомый набор букв и цифр, запускают процесс диагностики. Самое удобное здесь то, что работа стенда построена на системе подсказок. Выполняя заданную программу диагностики, мастер видит результаты испытания в реальном времени и на их основании делает выводы.

Вам сделали ТНВД: что дальше?
После замены деталей и сборки насос снова ставят на стенд для диагностики. И если хоть один из параметров выйдет в «красную» зону, то насос вернется на верстак под разборку с последующим, уже повторным, ремонтом. Полностью исправный насос необходимо запечатать в герметичную упаковку, чтобы исключить попадание внутрь влаги. Ну а далее – только установка обратно на двигатель.

В завершение Да, автомобили с дизельными двигателями совершили необычайный рывок в автоиндустрии, дав возможность экономить на топливе порой без потери в мощности, но с выигрышем в моменте. Однако вместе с этим пришла немалая головная боль для хозяев – необходимость более тщательного выбора поставщика продуктов нефтепереработки и еще более тщательного изучения заводского руководства по обслуживанию и эксплуатации своего четырехколесного спутника. Интересная интерпретация закона механики – в чем-то выигрываешь, в чем-то теряешь. Ну а для апологетов тяжелого топлива можно оставить памятку из двух пунктов: во-первых, чаще меняйте топливные фильтры (невзирая на техрегламент), а во-вторых, следите за индикаторами на приборном щитке – там есть особый значок, отображающий необходимость слива воды из фильтра-отстойника.

ТНВД представляет собой один из ключевых узлов двигателя транспортного средства. Его важность показывает сравнение с сердечной мышцей в организме человека, задачей которой выступает обеспечение циркуляции крови по телу. Назначение ТНВД аналогично, с той лишь разницей, что он отвечает за перемещение горючего по топливной системе.

Керамические колодки: плюсы и минусы,какие выбрать,отзывы,фото
ЭГУР Servotronic: что это такое и как он работает?
Топливная система common rail: что это и как работает,виды
Фазы газораспределения: что это такое и как они работают,фото

Устройство и принцип действия ТНВД механического типа

Стандартные рядные ТНВД

Рядные ТНВД относятся к классической аппарату ре впрыскивания дизельного топлива. Эти надежные агрегаты используются на дизелях с 1927 г. Рядные ТНВД устанавливаются на стационарные дизели, на двигатели грузовых автомобилей, строительных и сельскохозяйственных машин. Они позволяют получать высокие цилиндровые мощности у двигателей с числом цилиндров от 2 до 12. В сочетании с регуляторами частоты вращения коленчатого вала, устройствами для изменения угла опережения впрыскивания и различными дополнительными механизмами они обеспечивают потреби гелю возможность широкого выбора режимов эксплуатации. Рядные ТНВД для легковых автомобилей сегодня не производятся. Мощность дизеля существенно зависит от количества впрыскиваемого топлива. Рядный ТНВД всегда должен дозировать количество подаваемого топлива
в соответствии с нагрузкой. Для хорошей подготовки смеси ТНВД должен дозировать топливо максимально точно, впрыскивая его под очень высоким давлением в соответствии с процессом сгорания. Оптимальное соотношение расхода топлива, уровней шума работы и эмиссии вредных веществ в ОГ требует точности порядка 1° угла поворота коленчатого вала по моменту начала
впрыскивания. Для управления моментом начала впрыскивания и компенсации времени на проход волны давления топлива через подводящую магистраль в стандартном рядном ТНВД используется муфта 3 опережения впрыскивания см. на рис. ниже, которая с увеличением частоты вращения коленчатого вала изменяет момент начала подачи топлива в направлении «раньше». В особых случаях предусмотрено управление опережением впрыскивания в зависимости от нагрузки на двигатель. Нагрузка и частота вращения коленчатого вала регулируются изменением величины цикловой подачи топлива. Рядные ТНВД делятся на два типа: стандартные и с дополнительной втулкой.

  1. Дизель
  2. Стандартный рядный ТНВД
  3. Муфта опережения впрыскивания
  4. Топливоподкачивающий насос
  5. Регулятор частоты вращения коленчатого вала
  6. Установочный рычаг с тягой от педали газа
  7. Ограничитель полной подачи, зависимый от давления наддува
  8. Фильтр тонкой очистки топлива
  9. Магистраль высокого давления
  10. Форсунка о сборе
  11. Магистраль обратного слива топлива 

Конструкция и принцип действия

Рядные ТНВД серии РЕ имеют собственный кулачковый вал 14, который установлен в алюминиевом корпусе. Он
соединяется с двигателем либо непосредственно, либо через соединительный узел и муфту опережения впрыскивания.
Количество кулачков на кулачковом валу TНВД соответствует числу цилиндров двигателя. Над каждым кулачком находится роликовый толкатель 13 с тарелкой 12 пружины 11. Тарелка передает усилие от толкателя на плунжер 8, а пружина возвращает его в исходное положение. Гильза 4 плунжера является направляющей, в которой плунжер совершает возвратно-поступательное движение. Сочетание втулки и плунжера образует насосный элемент, или плунжерную пару.

  1. Корпус нагнетательного клапана
  2. Проставка
  3. Пружина нагнета тельного клапана
  4. Гильза плунжера
  5. Конус нагнетательного клапана
  6. Впускное и распределительное отверстия
  7. Регулирующая кромка плунжера
  8. Плунжер
  9. Регулирующая втулка плунжера
  10. Поводок плунжера
  11. Пружина плунжера
  12. Тарелка пружины
  13. Роликовый толкатель

Конструкция плунжерной пары

Плунжерная пара состоит из плунжера 9 и гильзы 8. Гильза имеет один или два подводящих канала (при двух каналах один из них выполняет функции подводящего и перепускного), которые соединяют полость всасывания с камерой высокого давления плунжерной пары. Над плунжерной парой находится штуцер 5 с посадочным конусом 7 нагнетательного клапана. Двигающаяся в корпусе TНВД рейка 10 вращает зубчатый сектор 2, управляя тем самым регулирующей втулкой 3 плунжера. Перемещение самой рейки определяется регулятором частоты вращения коленчатого вала. Это позволяет точно дозировать величину цикловой подачи. Полный ход плунжера неизменен. Активный ход и связанная с ним величина цикловой подачи могут изменяться поворотом плунжера, который совершается при помощи регулирующей втулки.

  1. Полость всасывания
  2. Зубчатый сектор
  3. Регулирующая втулка плунжера
  4. Боковая крышка
  5. Штуцер нагнетательного клапана
  6. Корпус нагнета тельного клапана
  7. Конус нагнетательного клапана
  8. Гильза плунжера
  9. Плунжер
  10. Рейка ТНВД
  11. Поводок плунжера
  12. Возвратная пружина плунжера
  13. Нижняя тарелка возвратной пружины
  14. Регулировочный винт
  15. Роликовый толкатель
  16. Кулачковый вал ТНВД

 

Плунжер имеет наряду с продольной канавкой 2 еще и спиральную канавку 7. Получаемая таким образом косая кромка на поверхности плунжера называется регулирующей кромкой 6. Если величина давления впрыскивания не превышает 600 бар, то достаточно одной регулирующей кромки, для больших значений давления впрыскивания необходим плунжер с двумя регулирующими кромками, отфрезерованными с противоположных сторон плунжера. Их наличие снижает износ плунжерной пары, поскольку плунжер с одной регулирующей кромкой под давлением прижимается к одной стороне гильзы, увеличивая ее выработку.В гильзе плунжера размещены одно или два отверстия для подвода и обратного слива топлива.
Плунжер притерт к гильзе так плотно, что пара герметична без дополнительных уплотнений даже при очень высоких давлениях и низких частотах вращения коленчатого вала. Из-за этого замене могут подвергаться только комплектные плунжерные пары.
Величина возможной подачи топлива зависит от рабочего объема пары. Максимальное значение давления впрыскивания у форсунки может составлять, в зависимости от конструкции, 400... 1350 бар. Угловой сдвиг кулачков на кулачковом валу гарантирует точное совмещение впрыскивания с фазовым сдвигом процессов по цилиндрам двигателя в соответствии с порядком его работы.

а - гильза с одним подводящим каналом
b - гильза с двумя подводящими каналами

  1. Подводящий канал
  2. Продольная канавка
  3. Гильза плунжера
  4. Плунжер
  5. Перепускном канал
  6. Регулирующая кромка
  7. Спиральная канавка
  8. Кольцевая канавка для смазки

ПЛУНЖЕРНАЯ ПАРА С ПРИВОДОМ

а - НМТ плунжера
б - ВМТ плунжера

  1. Кулачок
  2. Ролик
  3. Роликовый толкатель
  4. Нижняя тарелка возвратной пружины
  5. Возвратная пружина плунжера
  6. Верхняя тарелка возвратной пружины
  7. Регулирующая втулка плунжера
  8. Плунжер
  9. гильза плунжера 

Принцип действия плунжерной пары

(последовательность фаз)
Вращение кулачкового вала ТНВД преобразуется непосредственно в возвратно-поступательное движение роликового толкателя, приводящего в действие плунжер Движение плунжера в направлении к его ВМТ называется ходом нагнетания.
Возвратная пружина возвращает плунжер к его НМТ. Пружина рассчитана так, что даже при максимальных частотах
вращения кулачкового вала ТНВД ролик не отходит от кулачка; отскок и вместе с ним удар ролика по кулачку при длительной эксплуатации привели бы к разрушению поверхностей кулачка или ролика. Плунжерная пара работает по принципу перетока топлива с управлением регулирующей кромкой 5. Этот принцип используется в рядных ТНВД серии РЕ и индивидуальных ТНВД серии PF. В НМТ плунжера подводящий канал 2 гильзы 3 и канал 6 слива топлива открыты. Благодаря им топливо может перетекать под давлением подкачки из полости впуска в камеру 1 высокого давления. При движении вверх плунжер закрывает отверстие подводящего канала своим верхним торцом. Этот ход плунжера называется предварительным. При дальнейшем движении плунжера вверх давление
растет, что приводит к открытию нагнетательного клапана над плунжерной парой. При применении нагнетательного клапана постоянного объема плунжер дополнительно совершает втягивающий ход. После открытия нагнетательного клапана топливо во время активного хода через магистраль высокого давления направляется к форсунке, которая впрыскивает точно дозируемое количество топлива в камеру сгорания двигателя. Когда регулирующая кромка плунжера открывает перепускной канал, активный ход плунжера завершается. С этого момента топливо в форсунку не нагнетается, поскольку во время остаточного хода оно через продольную и спиральную канавки из камеры высокого давления направляется в перепускной канал. Давление в плунжерной паре при этом падает. По достижении ВМТ плунжер меняет направление своего движения на противоположное. Топливо при этом через спиральную и продольную канавки поступает обратно из перепускного канала в камеру высокого давления. Это происходит до тех пор, пока регулирующая
кромка вновь не перекроет перепускной канал. При продолжении обратного хода плунжера над ним возникает область низкого давления. С освобождением подводящего канала верхним торцом плунжера топливо вновь поступает в камеру высокого давления. Цикл начинается снова.

Последовательность работы плунжерной пары

  1. Камера высокого давления
  2. Подводящий канал
  3. Гильза плунжера
  4. Плунжер
  5. Регулирующая кромка
  6. Перепускной капал А полный ход плунжера

Регулирование цикловой подачи

Величину цикловой подачи топлива можно регулировать изменением активного хода кромки. Для этого рейка 5 через регулирующую втулку плунжера поворачивает сам плунжер 3 таким образом, что регулирующая кромка 4 может изменять момент конца нагнетания и
вместе с тем величину цикловой подачи (регулирование по концу впрыскивания). В крайнем положении, соответствующем нулевой подаче (а), продольная канавка находится непосредственно перед перепускным каналом. Вследствие этого давление в камере высокого давления плунжерной пары во время всего хода плунжера равняется давлению в полости всасывания и нагнетания топлива не происходит. В это положение плунжер приводится, если двигатель должен быть остановлен. При средней подаче (Ь) плунжер устанавливается в промежуточное положение (по регулирующей кромке). Полная подача (с) становится возможной только при установке максимального активного хода плунжера. Передача движения от рейки на плунжер может производиться либо через
зубчатую рейку на зубчатый сектор , закрепленный на регулирующей втулке плунжера либо через рейку с направляющими шлицами на штифт или сферическую головку на регулирующей втулке плунжера .

а - нулевая подача
b - средняя подача 
с - полная подача

  1. Гильза плунжера
  2. Подводящий канал
  3. Плунжер
  4. Регулирующая кромка плунжера
  5. Рейка ТНВД

Назначение, устройство и работа топливных насосов высокого давления и их привод.

Топливный насос высокого давления (Рис. 43) – предназначен для подачи топлива через форсунку в цилиндры дизеля под высоким давлением в определенном количестве и в строго определенный момент. На дизеле установлены шесть одинаковых топливных насосов плунжерного типа, каждый через бобышку прикреплен четырьмя болтами к верхнему горизонтальному листу отсека распределительного вала.

· Устройство ТНВД. Все детали насоса размещены в пустотелом корпусе 23, отлитом из специального магниевого чугуна. В верхней части корпуса на-резана резьба (М48) под нажимной штуцер 11. Ниже сделаны несколько расточек различного диаметра, образующих полость для топлива и кольцевой борт под гильзу 16. В стенке корпуса имеется отверстие г с резьбой (М22) под штуцер 25, а в боковом приливе просверлено горизонтальное отверстие д диаметром 16 мм под зубчатую рейку 6. Внизу корпус имеет прямоугольный фланец б с четырьмя отверстиями и цилиндрический выступ а диаметром 85 мм, обеспечивающий центровку насоса с бобышкой 13 (см. рис. 44). Над фланцем б (см. рис. 43) в корпусе насоса расположено контрольное окно в, используемое при ремонте.


Сверху в корпус вставляют стальную гильзу 16, уплотняя ее алюминиевым кольцом 7. От проворота гильзу фиксируют штифтом 18, запрессованным в корпус, для чего на ее наружной поверхности, имеющей диаметр 40 мм, про-фрезерована канавка р. Верхняя часть гильзы утолщена (наружный диаметр 45 мм, а внутренний 20 мм), так как в ней при работе насоса создается высокое давление топлива. Два радиальных отверстия с диаметром 6 мм с коническими расточками по концам служат для прохода топлива внутрь гильзы.

Сверху на торец гильзы устанавливают с притиркой корпус 8 вместе с притертым к нему нагнетательным клапаном 9. В нижней части нагнетательный клапан имеет четыре направляющих пера е, цилиндрическая поверхность которых притерта к корпусу 8, а в верхней части – два пояска. Конический поясок з притерт к седлу, а цилиндрический поясок ж, являющийся разгрузочным, притерт к корпусу 8 клапана.

Нагнетательный клапан прижат к седлу корпуса 8 пружиной 14, установленной в расточке нажимного штуцера 11, ввернутого в корпус насоса. Между штуцером 11 и корпусом 8 ставят стальное уплотнительное кольцо 15, а относительно корпуса штуцер уплотняют резиновым кольцом 10, установленным в канавке на его наружной поверхности. Вверху штуцер имеет хвостовик с резьбой (М22) под накидную гайку 12 для крепления трубопровода высокого давления 13.


Рис. 43. Топливный насос высокого давления:

1, 4 - стопорные кольца; 2 - нижняя тарелка; 3, 14 - пружины; 5 - стопорный винт; 6 - зубчатая рейка; 7, 15 - уплотнительные кольца; 8 - корпус нагнетательного клапана; 9 - нагнетательный клапан; 10 - резиновое кольцо; 11 - нажимной штуцер; 12 - накидная гайка; 13 - трубопровод высокого давления; 16 - гильза; 17 - пробка; 18 - штифт; 19 - поворотная втулка;
20 - верхняя тарелка; 21 - стакан; 22 - плунжер; 23 - корпус насоса; 24 - трубка подвода топлива; 25 - штуцер; а, о - выступы; б - фланец; в - контрольное окно; г, д, с, у - отверстия;
е - перо; ж, з - пояски нагнетательного клапана; и - кольцевая выточка; к - вертикальный паз; л - отсечная кромка; м - направляющая часть плунжера; н - лабиринтная канавка; п - хвостовик; р - канавка; т - зубчатый венец; ф - паз; А - кольцевая полость.

Снизу в гильзу вставлен притертый к ней плунжер 22, который представляет собой цилиндрический стержень, изготовленный из высококачественной стали и термически обработанный. На верхней части плунжера (головке), имеющей диаметр 20 мм, профрезерован вертикальный паз к шириной 4 мм. Сверху от паза к до кольцевой выточки и сделан винтовой вырез, образующий отсечную кромку л. Торцовая и спиральная кромки плунжера должны быть остры-ми. На направляющей части м плунжера проточена лабиринтная канавка н ши-риной 2 мм, уменьшающая просачивание топлива по плунжеру. В нижней части плунжер имеет выступы о и заканчивается цилиндрическим хвостовиком п.

Гильза вместе с плунжером образует прецизионную пару, обработанную с высокой степенью точности (зазор между сопрягаемыми деталями 1,5-2,5 мкм). В случае неисправности гильзы или плунжера замене подлежит комплект в сборе.

Снизу на гильзу с зазором надевают поворотную втулку 19, в верхней части которой нарезан зубчатый венец т, входящий в зацепление с зубчатой рейкой 6, установленной в корпусе насоса. На цилиндрической поверхности рейки сделан паз ф под стопорный винт 5, ограничивающий продольное перемещение рейки и исключающий ее поворот. Винт 5 ввернут в наклонное отверстие корпуса насоса. Поворотная втулка в нижней части имеет прорези, в которые входят выступы о плунжера. Таким образом, поворотная втулка позволяет плунжеру совершать возвратно-поступательное движение и одновременно поворачивает его при перемещении рейки.

Для перемещения плунжера вниз служит пружина 3, зажатая между двумя тарелками. Верхняя тарелка 20 надета на поворотную втулку 19 и удерживается разрезным стопорным кольцом 4, установленным в проточке корпуса. Нижняя тарелка 2 имеет радиальную прорезь и надевается на нижнюю часть плунжера, упираясь в его хвостовик п.

Снизу в корпус насоса вставляют стальной стакан 21, передающий усилие от толкателя топливного насоса на плунжер. Перемещение стакана ограничивается разрезным стопорным кольцом 1, установленным в канавке корпуса насоса. На наружной поверхности стакана сделана кольцевая риска, используемая при проверке момента начала подачи топлива, а в донышке – четыре отверстия у диаметром 10 мм для слива просочившегося топлива.

· Толкатель топливного насоса (Рис. 44, а) - передает усилие от кулачка распределительного вала на плунжер топливного насоса.

Толкатель 19 изготовлен из качественной стали и имеет цилиндрическую форму. На его наружной поверхности проточены три кольцевые канавки в, соединенные двумя вертикальными пазами а, что обеспечивает смазывание толкателя при перемещении его в корпусе 18. В нижней части толкателя сделана прорезь под ролик, свободно установленный на пальце 20.

Пустотелый палец 20 по конструкции и установке не отличается от пальца толкателя привода клапанов. Ролик состоит из двух колец – внутреннего 25 и внешнего 24, между которыми имеется зазор 0,02-0,06 мм. На внутренней поверхности кольца 25 проточена канавка з, из которой по четырем радиальным отверстиям и диаметром 3,5 мм масло выходит на смазывание контактной поверхности обоих колец. Такая конструкция ролика обеспечивает ему повышенную прочность в условиях высоких скоростей движения толкателя топливного насоса, что обусловлено геометрической формой топливного кулачка распределительного вала.

Рис. 44. Толкатель топливного насоса (а) и положения плунжера

при различной подаче топлива (б):

1 - боковой лист блока; 2 - распределительный вал; 3 - топливный кулачок; 4 - угольник;
5 - фланец; 6 - верхний горизонтальный лист; 7 - тарелка; 8 - стакан; 9 - плунжер; 10 - корпус топливного насоса; 11 - пружина; 12 - отражательная гайка; 13 - бобышка; 14 - сливная трубка; 15 - сальник Гуферо; 16 - регулировочный болт; 17 - контргайка; 18 - корпус толкателей; 19 - толкатель; 20 - палец; 21 - планка; 22 - болт; 23 - стопорное кольцо; 24 - наружное кольцо ролика; 25 - внутреннее кольцо ролика; 26 - гильза; а - вертикальный паз; б – шестигранник; в, г, з - канавки; д, ж, и - отверстия; е - выступ бобышки.

Сверху в толкатель ввернут регулировочный болт 16. Шестигранник б на цилиндрическом стержне болта позволяет вворачивать или выворачивать болт, регулируя момент начала подачи топлива. После регулировки положение болта фиксируют контргайкой 17. Регулировочный болт проходит через центрального отверстие бобышки 13, отлитой из алюминиевого сплава. Своим цилиндрическим выступом диаметром 80 мм бобышка входит в отверстие верхнего горизонтального листа 6 отсека распределительного вала.

Сверху на регулировочный болт навернута цилиндрическая отражательная гайка 12, образующая вместе с выступом е бобышки лабиринт, предотвращающий попадание топлива в масло. Кроме того, просачиванию топлива по болту препятствует сальник 15, установленный снизу в расточке бобышки и укрепленный в ней стопорным кольцом 23. Для крепления гайки 12 на ее на-ружной поверхности сделаны четыре глухих отверстия под выступы специального ключа.

Просочившееся в бобышку топливо по отверстию ж и трубке 14 отводится в сливной коллектор чистого топлива. Труба 14 развальцована в планке 21, которая прикреплена к бобышке двумя болтами 22. В случае засорения трубки 14 топливо из бобышки стекает через два боковых отверстия д на верхний лист 6, попадает в канавку г и отводится из нее в грязесборник топливного бака.

· Работа топливного насоса. Кольцевая полость А (см. рис. 43) между корпусом 23 насоса и гильзой 16 постоянно соединена с топливным коллектором через трубку 24 и штуцер 25, а следовательно, заполнена топливом под давлением 0,20 - 0,25 МПа (2,0 - 2,5 кгс/см2). При движении плунжера вниз под действием возвратной пружины 3 топливо из коллектора через два радиальных отверстия с в гильзе поступает в надплунжерное пространство.

При набегании топливного кулачка 3 (см. рис. 44, а) распределительного вала 2 на ролик толкатель 19 начинает двигаться вверх и своим регулировочным болтом 16 воздействует через стакан 5 на плунжер 9 топливного насоса. Ход плунжера при любой частоте вращения коленчатого вала дизеля одинаков и равен 20 мм, так как зависит только от размеров кулачка 3. Профиль кулачка обеспечивает значительное ускорение движущегося плунжера. Часть хода плунжера (30 - 40%) затрачивается на его разгон, сопровождающийся вытеснением некоторого количества топлива из надплунжерного пространства обратно в коллектор через отверстия с (см. рис. 43).

При скорости 0,4 - 0,8 м/с плунжер своей торцовой кромкой перекрывает оба отверстия с в гильзе. Так как при дальнейшем движении плунжера объем надплунжерного пространства быстро уменьшается, то давление топлива в нем резко возрастает. Когда усилие, создаваемое давлением топлива над плунжером, становится больше усилий пружины 14 и остаточного давления в нагнетательном трубопроводе, клапан 9 открывается и топливо нагнетается в трубопровод высокого давления 13. Нагнетание топлива происходит до тех пор, пока кромка л плунжера не откроет одно отверстие в гильзе и не сообщит тем самым надплунжерное пространство с топливным коллектором.

Давление топлива над плунжером резко падает, несмотря на продолжающееся движение плунжера вверх. Нагнетательный клапан 9 закрывается. Как только нижняя кромка цилиндрического разгрузочного пояска ж клапана входит в корпус 8, прекращается сообщение трубопровода высокого давления 13 с камерой над плунжером. При дальнейшей посадке клапана до упора коничес-ким пояском з в седло происходит некоторая разгрузка трубопровода 13 от высокого остаточного давления из-за освобождения небольшого объема при посадке клапана.

Выход топлива из надплунжерного пространства через радиальное отверстие с в полость А в конце хода нагнетания происходит с очень большой скоростью, что приводит к местным кавитационным разрушениям корпуса насоса. Поэтому против отверстия с гильзы в корпус 23 ввертывают стальную сменную пробку 17.

Количество подаваемого насосом топлива зависит от длительности наг-нетания его плунжером, что определяется ходом нагнетания, т.е. расстоянием между торцовой и спиральной кромками плунжера, измеряемым по оси отверстия с. Регулирование подачи топлива осуществляется объединенным регулятором дизеля, который, перемещая рейки, заставляет втулки 19 поворачивать плунжеры 22 насосов высокого давления.

На (Рис. 44, б) показаны три различных положения плунжера 9 относительно гильзы 26. В положении / (нулевая подача топлива) ход нагнетания равен нулю, т.е. надплунжерное пространство постоянно соединено с отверстием в гильзе через вертикальный паз на головке плунжера. В положении // (средняя подача топлива) плунжер повернут на некоторый угол и имеет ход нагнетания. В положении /// (максимальная подача топлива) плунжер повернут на наибольший угол, т.е. ход нагнетания максимальный.

· Соединение реек топливных насосов с валом управления. (Рис. 45).

Вал управления 1 рейками топливных насосов состоит из трех частей, жестко соединенных друг с другом. Выступ в на торце одной части вала при сборке вставляют в торцовый паз г другой части, после чего обе части вала дополнительно закрепляют хомутом 11, стянутым двумя болтами 9.

Вал установлен на семи стойках 13, каждая из которых зафиксирована двумя штифтами и закреплена двумя болтами на верхнем горизонтальном листе 12 отсека распределительного вала. В расточки стоек запрессованы шариковые подшипники 7, укрепленные стопорными кольцами 8. Передний конец вала 1 проскальзывающей тягой соединен с объединенным регулятором дизеля, а с противоположной стороны вал зубчатой муфтой соединен с предельным регулятором.

Против каждого насоса на валу укреплены два хомутика. Правый хомутик 14 пружиной 15, работающей на скручивание, связан с поводком 4, свободно установленным на валу. Отогнутые концы пружины входят в отверстия поводка 4 и хомутика 14. Поводок при помощи пальца 22 шарнирно соединен с зубчатой рейкой 21 топливного насоса, для чего верхний конец поводка выполнен в виде вилки. Палец 22 вместе с зубчатой рейкой 21 вставляют сверху в вырезы вилки. Плоские срезы на концах пальца не позволяют ему смещаться вдоль оси. В нижней части поводок имеет выступ а с отверстием под регулировочный болт 16.

Рис. 45. Соединение реек топливных насосов:

1 - вал управления топливными насосами; 2 - головка; 3 - топливный насос; 4 - поводок;
5 - фиксатор; 6, 9, 17 - стяжные болты; 7 - шариковый подшипник; 8 - стопорное кольцо;
10 - шайба; 11 - хомут; 12 - верхний горизонтальный лист отсека распределительного вала; 13 - стойка; 14, 18 - правый и левый хомутики; 15, 20 - пружины; 16 - регулировочный болт; 19 - гайка; 21 - зубчатая рейка; 22 - палец; а, б, в - выступы; г - паз.

Левый хомутик 18, так же как и правый, жестко укреплен на валу при помощи стяжного болта 17. Хомутик 18 имеет цилиндрический выступ б с двумя плоскими срезами на наружной поверхности. В расточку выступа вставляют пружину 20 и фиксатор 5, на резьбовой конец которого навертывают гайку 19 для крепления головки 2. Для удобства пользования цилиндрическая поверхность головки выполнена рифленой.

Под действием пружины 20 фиксатор 5 выходит из хомутика 18 и опирается на торец регулировочного болта 16, который должен быть отрегулирован так, чтобы при неработающем дизеле выход рейки был равен размеру «Стоп», выбитому на корпусе топливного насоса. Пружина 15 при регулировке скручивается. Положение регулировочного болта фиксируют гайкой, после чего пломбируют.

Когда объединенный регулятор дизеля поворачивает вал на увеличение подачи топлива, левый хомутик 18 через фиксатор 5 давит на регулировочный болт 16, поворачивая поводок 4, выдвигающий рейку 21 топливного насоса. При повороте вала в другую сторону правый хомутик 14 через пружину 15 воздействует на поводок 4, передвигая рейку 21 на уменьшение подачи топлива. Затяжка пружины 15 и в том, и в другом случае не меняется, так как пружина поворачивается вместе с укрепленными на валу хомутиками 14 и 18.

Для отключения насоса фиксатор 5 с помощью головки 2 отводят от регу-лировочного болта 16, преодолевая усилие пружины 20, и поворачивают на угол 90°. В таком положении головка упирается в торец выступа б, удерживая фиксатор. Освобожденный поводок под действием пружины 15 перемещает рейку топливного насоса на нулевую подачу топлива. В дальнейшем поворот вала никакого перемещения рейки не вызывает.

Инжекторный насос дизельного двигателя

: устройство и принцип действия

Требования, предъявляемые к современным дизельным двигателям по мощности, экономичности и экологичности, повышаются. Чтобы удовлетворить эти требования, необходимо обеспечить хорошее смесеобразование. Для этого двигатели оснащены современными и эффективными системами впрыска топлива. Они способны не только обеспечивать наименьшее распыление за счет более высокого давления, но также точно регулировать время впрыска и количество топлива, подаваемого в цилиндры.Такая система существует и полностью отвечает всем этим высоким требованиям. Это насос-форсунка дизельного двигателя. Это отдельный элемент впрыска для каждого цилиндра двигателя. Деталь управляется электронным блоком.

Diesel Ideas

О создании узла, в котором бы совмещались форсунка и топливный насос, думал сам создатель этих двигателей Рудольф Дизель.

Это позволило бы избежать топливных магистралей и трубопроводов высокого давления, тем самым увеличивая давление впрыска.Но во времена Diesel не было таких возможностей, которые существуют сегодня.

Описание системы

Насос-форсунка дизельного двигателя - это насос для подачи топлива и форсунка, объединенные в один блок. Как и в ТНВД с форсунками, впрыск на основе этих элементов может выполнять определенные задачи. Система создает достаточное давление, подает определенную порцию топливной смеси в нужный момент. Для каждой камеры сгорания предусмотрен отдельный насос.Поэтому сейчас можно встретить двигатели, где нет топливопроводов высокого давления, то есть на силовых агрегатах с ТНВД.

Исторические факты

Эта система впрыска не является новой разработкой. Насос-форсунка дизельного двигателя устанавливалась на автомобили в конце 30-х годов. Впервые конструкция была испытана на дизельных двигателях железнодорожного, морского и грузового транспорта. Всю эту технику объединяло одно - малая скорость. Особенностями этих двигателей являются наличие отдельного насоса на каждый цилиндр и короткие напорные магистрали, идущие к форсунке.Приводы элементов - толкатели и буферы.

Серийно такие системы начали применять на грузовиках с 1944 года. На легковых автомобилях - с 1988 года. В 1938 году на предприятии Detroit-Diesel, которое тогда принадлежало концерну General Motors, было создано первое подобное устройство, в котором использовалась система питания дизельный двигатель с насос-форсунками. Несмотря на то, что устройство было разработано в США, конструкции этого типа были разработаны и в СССР.

Первые двигатели ЯАЗ-204 были оснащены такими форсунками еще в 1947 году.Но эти сайты были созданы по лицензии Detroit-Diesel. Этот силовой агрегат, а затем доработанный шестицилиндровый двигатель производился до 1992 года.

В 1994 году устройство и работу насос-форсунки дизельных двигателей обратили на себя инженеры Volvo. Компания выпускает первый грузовик Fh22 с форсунками этого типа. Затем такими же агрегатами начнут оснащать свои грузовики «Скания» и «Ивеко».

Среди автомобилей эту систему впервые начали использовать на «Фольксвагене».Инжектор дизельного двигателя «Фольксваген» появился в 1998 году. В конце 90-х двигатели с такой системой занимали 20% автомобильного рынка.

Устройство

Итак, рассмотрим, что собой представляет насос-форсунка дизельных двигателей. Устройство предельно простое. В корпусе агрегата находится непосредственно насадка, дозатор, а также силовая часть. Благодаря этому силовому приводу насос-форсунка имеет определенные преимущества перед традиционными системами. Таким образом, время движения горючей жидкости под высоким давлением значительно сокращается.Увеличивается гидравлический КПД и уменьшается вес.

Форсунки последнего поколения оснащены насосами, способными создавать достаточно высокое давление (до 2500 бар). Они могут мгновенно реагировать на команды ЭБУ, который собирает и анализирует текущую информацию от внешних датчиков. По этим данным определяется необходимое количество смеси и время впрыска. Это позволяет получить оптимальные значения мощности для заданных условий эксплуатации.Кроме того, узлы помогают экономить дизельное топливо, что позволяет минимизировать вредные выбросы в атмосферу и способствует снижению шума от работающего двигателя. Наконец, устройство очень компактное и может располагаться в головке блока цилиндров. Вы также можете установить другие детали и компоненты.

Форсунка сконструирована таким образом, что обеспечивает наиболее эффективное смесеобразование. Для этого инженеры предусмотрели этапы - это предварительный, основной и дополнительный впрыск.Предварительно дает плавное сгорание в момент основной фазы, когда качественное формирование рабочей смеси обеспечивается на разных режимах работы двигателя. Дополнительный необходим для процессов регенерации в сажевом фильтре.

Принцип действия механической форсунки

Насос форсунки дизельного двигателя установлен непосредственно в головке блока цилиндров. На распредвале есть четыре специальных кулачка. Они служат для запуска привода форсунок. С помощью коромысла усилие передается на насос-форсунку с помощью плунжеров.

Кулачок привода имеет специальный профиль, который обеспечивает резкий подъем вверх, а затем медленное опускание коромысла. Когда последний поднимается, плунжер быстро прижимается. Это создает нужное давление. Когда коромысло опускается медленно, поршень поднимается. Благодаря этому топливо поступает в ячейки под высоким давлением без пузырьков воздуха.

Процесс впрыска осуществляется при подаче управляющего напряжения от компьютера на электромагнитный клапан.

Фазы впрыска

Рассмотрим подробнее принцип работы насосно-инжекторного дизельного двигателя.Когда под действием коромысла плунжер движется вниз, горючая смесь перетекает по каналам в форсунки. Когда клапан закрывается, подача дизельного топлива прекращается. Давление начинает расти. Когда оно достигает уровня 13 МПа, игла распылителя преодолевает силу пружины. После этого начнется предварительная фаза инъекции.

Как только клапан начинает открываться, предварительная фаза заканчивается, и топливная смесь направляется по питающей магистрали. Давление начинает падать.В зависимости от режима работы двигателя может выполняться одна или две предварительные фазы.

Когда плунжер опускается, биение запускает основной впрыск. Клапан снова закрывается, давление топлива снова повышается. Когда уровень достигает 30 мПа, игла распылителя преодолевает давление и поднимается вверх, тем самым запуская процесс впрыска. Чем выше повышается давление, тем сильнее сжимается топливо. Количество дизельного топлива и воздуха, которое может попасть в цилиндр, увеличивается.

Максимальная подача (а она осуществляется при работе двигателя в режиме пиковой мощности) осуществляется при давлении 220 мПа.Клапан закрывает основную ступень впрыска. Давление падает, игла закрывается.

Дополнительная фаза впрыска выполняется, когда плунжер продолжает движение вниз. Принцип работы устройства на этом этапе такой же, как и у основного впрыска. Чаще алгоритм выполняется в два этапа.

Если рассматривать устройство инжекторного насоса дизельного двигателя TDI, то он может быть оснащен датчиком, контролирующим подъем иглы. Положение иглы требуется блоку управления, где топливные насосы также управляются электроникой.

Преимущества

Если в системе Common Rail используется аккумуляторный впрыск, то насос-форсунка подает топливную смесь под более высоким давлением из-за отсутствия длинных магистралей.

Они часто могут разрушиться в процессе эксплуатации вагона. Это слабое звено в классических энергосистемах. Насос-форсунка позволяет большему количеству топлива поступать в камеру сгорания. В этом случае опрыскивание будет более эффективным. Моторы, оснащенные такими агрегатами, более мощные.

Кроме того, двигатели с таким впрыском работают менее шумно, чем их аналоги.Но с «Common Rail» или ТНВД ТНВД все же будет компактнее.

недостатки

Но есть и недостатки. Самый серьезный минус - это высокий спрос на качественное топливо. Достаточно заставить систему перестать работать. Второй минус - цена.

Отремонтировать именно этот узел вне заводских условий практически невозможно. Еще один недостаток - под воздействием высокого давления эти узлы часто ломают посадочные гнезда

.

Устройство, применение, принцип действия

Оборудование для перекачки различных жидкостей и веществ представлено на рынке в разных исполнениях. Разработчики стремятся оптимизировать конструкцию, чтобы обеспечить высокую производительность и достаточную мощность. Однако с увеличением КПД наблюдается обратный процесс быстрого износа рабочих элементов в процессе эксплуатации. В свою очередь, струйные насосы лишены таких недостатков, поскольку в них отсутствуют рабочие узлы, которые подвергались бы интенсивным нагрузкам.Чтобы понять другие особенности и преимущества данного типа агрегатов, следует более подробно рассмотреть их конструкцию.

Насосный агрегат

В устройстве не предусмотрены вращающиеся элементы, а конструктивные детали и узлы ориентированы на обеспечение работы рабочих жидкостей. Насос состоит из четырех компонентов, включая всасывающую камеру, сопло, смесительный бак и диффузор. Также устройство струйного насоса может предусматривать комплектацию специальными форсунками, предназначенными для подачи рабочих жидкостей.Одна модель агрегата может быть дополнена различными сужающимися элементами. Конструкция представлена ​​в различных модификациях и в зависимости от типа используемого гидроносителя. В частности, есть устройства для работы с жидкими средами, газообразными веществами и гидромиксом.

Как работают струйные насосы?

Такие устройства работают по принципу передачи кинетической энергии. Энергетический заряд передается от потоков рабочих жидкостей к перекачиваемой среде.Важно отметить, что в процессе переноса не задействуются механические устройства и промежуточные узлы. Обратная связь по высокой мощности обеспечивается скоростью, с которой рабочая жидкость выходит из сопла под давлением. При отсутствии движущихся компонентов возрастает роль вакуумных камер, которыми оснащен струйный насос. Принцип работы агрегата предусматривает образование свободного пространства в емкости, куда засасывается жидкость. То есть носитель из приемной камеры по всасывающим каналам направляется в емкость, а затем в смесительное отделение .В процессе слияния функциональной жидкости и носителя происходит обмен энергией, в результате чего сила потока ослабляется. Конечной точкой в ​​простейших системах является емкость сбора, в которую среда входит с пониженной скоростью, но с сохраненным напором.

Тактико-технические характеристики

Обычно такие агрегаты, в которых щадящие, с точки зрения износа конструкции, жидкости не отличаются высокой производительностью. Отчасти это подтверждает пример струйных насосов, но в некоторых сегментах применения их возможностей вполне достаточно.Например, производительность устройств может достигать 30 л / ц. Этот показатель относится к профессиональному оборудованию, а упрощенные конструкции обеспечивают в среднем 15-17 л / ц. Что касается высоты подъема, то работа струйного насоса рассчитана на диапазон 8-15 м, хотя некоторые модификации специального назначения могут обеспечивать подъем до 20 метров. Но в этом случае значительно снижается производительность и КПД, поэтому для таких нужд часто используются альтернативные конструкции насосов.

Типы насосов

Как уже отмечалось выше, конструкции различаются по типу обслуживаемой жидкости.Теперь стоит рассмотреть их более подробно. Самые популярные модели работают с водовозами и смесями, не оказывающими деструктивного воздействия на коммуникационную инфраструктуру агрегата. Такие устройства называются эжекторами и действуют по принципу откачки и всасывания в разных камерах. Распределенные и струйные насосы, функция которых ориентирована на обслуживание агрессивных сред. Это эрлифты, применяемые в скважинах и системах связи, обеспечивающих перекачку химически активных смесей и жидкостей с наличием твердых частиц.Менее популярны, но в некоторых случаях инжекторы незаменимы. Это устройства, которые тоже работают с жидкостями, но функциональной средой в данном случае является пар.

Приложения

Разнообразие вариантов конструкции привело к соответствующему распределению насосов этого типа. В частности, они используются в химической промышленности для перекачки кислот, щелочей, масляных носителей, солевых смесей и мазута. Технологи в этой отрасли ценят механическую износостойкость и долговечность, которые отличает струйный насос.Использование таких агрегатов в быту в основном ориентировано на подъем воды из колодцев. Некоторые модификации вполне подходят для формирования артезианских источников. Также высокая термостойкость позволяет использовать такое оборудование в системах отопления. Для канализации такой раствор также выгоден, так как насос эффективно справляется с удалением отложений в виде ила и песка.

Преимущества и недостатки струйных агрегатов

Среди основных достоинств таких агрегатов выделяют простую и надежную конструкцию, долговечность в эксплуатации, надежность и нечувствительность к агрессивным средам.В значительной степени эти преимущества связаны с тем, что в струйных насосах отсутствуют движущиеся части, которые в других насосах быстро изнашиваются. Кстати, эта же конструктивная особенность позволяет изготавливать насосы небольших размеров, что влияет на минимизацию затрат на обслуживание. Но у таких устройств есть недостатки, среди которых есть необходимость специальной подготовки рабочих жидкостей и низкие показатели эффективности.

Заключение

Принцип действия струйных агрегатов определил их конкретную направленность работы.Такое оборудование практически не используется в традиционных системах водоснабжения и орошения. Но, благодаря высокой износостойкости, струйные насосы нашли свое место в системах связи, работающих в условиях высоких нагрузок. Достаточно сказать, что агрегаты эффективно справляются с обслуживанием химикатов и загрязненных сред, сохраняя при этом исходную производительность. Но расплачиваться за столь весомое преимущество владельцы техники обладают скромным энергетическим потенциалом. Низкая производительность не всегда является решающим фактором при выборе насосов, поэтому спрос на струйные устройства сохраняется.

.

PPT - Дозирующие нагнетательные насосы Port-Helix Глава 22 Презентация в PowerPoint

  • Дозирующие нагнетательные насосы Port-HelixГлава 22 DSL 131

  • ЦЕЛИ • Определите основные компоненты типичного впрыскивающего насоса-дозатора Port-Helix. • Объясните принципы работы линейного впрыскивающего насоса-дозатора со спиральным отверстием. • Определите термины эффективный ход, закрытие порта, открытие порта, NOP, остаточное давление в трубопроводе и пиковое давление.• Объясните, как компоненты насосного элемента создают давление впрыска. • Определите измерение и факторы, которые его контролируют. • Выявление различий между гидромеханическими и электронно управляемыми версиями дозирующих насосов для впрыска со спиральным портом. • Объясните работу анероидных устройств, компенсаторов высоты и механизмов изменения времени / опережения. Подсоедините впрыскивающий насос к двигателю, используя синхронизирующие устройства для разливов, штифтов или электронных устройств. • Обрисовать принципы работы версий с электронным управлением впрыскивающих насосов-дозаторов со встроенным портом и спиралью.

  • ЗАДАЧИ (продолжение) • Описать функции корпуса реечного привода Bosch в версиях с электронным управлением дозирующих топливных насосов со спиральным портом. • Выполните синхронизацию электронного насоса PE Bosch с двигателем, используя соответствующий инструмент для синхронизации. • Первый впрыск жидкого топлива под высоким давлением в камеру сгорания высокоскоростного дизеля был разработан в 1927 году Робертом Бошем. • Это превратилось в топливные насосы типа «насос-форсунка» (PLN), используемые компаниями Caterpillar, Mack, Navistar, Deere и другими производителями дизельных двигателей.

  • Встроенный, дозирующий впрыскивающий насос со сквозным отверстием • Первый впрыск жидкого топлива под высоким давлением в высокоскоростную камеру сгорания дизельного топлива, разработанный в 1927 году Робертом Бошем. • Разработан в PLN (Pump-Line-Nozzel, используемый многими моими производителями оригинального оборудования в 1990-х годах для грузовых автомобилей для шоссе. • Последнее поколение эксплуатировалось до 1997 года, но имело электронное управление. • После 2011 года использовалось только во внедорожных приложениях мощностью 70 л.с. или меньше. • Электронные версии не соответствовали стандартам экономии топлива и выбросов.• Показан топливный насос Bosch со спиральной спиралью.

  • Расшифровка топливного насоса Bosch Серийный номер • Таблица, используемая для расшифровки серийных номеров топливного насоса Bosch.

  • КОМПОНЕНТЫ ИНЖЕКЦИОННОГО НАСОСА • Корпус насоса • Фланец крепится к вспомогательному приводу двигателя. • Кулачковый блок • Нижняя часть корпуса насоса • Вмещает распределительный вал • Вмещает толкатели • Обеспечивает масляный поддон • Примечание: в старых системах была отдельная подача масла, которую требовалось обслуживать отдельно от двигателя.• В более новых агрегатах используется моторное смазочное масло и имеется сливное отверстие для возврата излишков масла в поддон двигателя. • Распределительный вал • Поворачивается на 360 градусов на каждые 720 градусов вращения двигателя. • Может быть симметричной, асимметричной или с защитой от отдачи.

  • Приведение в действие насосного элемента типа Port-Helix • Каждая форсунка приводится в действие специальным кулачковым профилем на распределительном валу. • На каждом профиле установлен толкатель, состоящий из плунжера и цилиндра. • Цилиндр • Неподвижный • Порты в верхней части, открытые для заправочного канала топлива

  • Геометрия исполнительного кулачка • Три профиля кулачка, обычно используемые в насосе со спиральным портом.

  • Заглушка порта Когда плунжер выталкивается вверх, он закрывает отверстия и задерживает топливо в цилиндре.

  • Эффективный ход По мере того, как плунжер продолжает движение вверх, впускное и сливное отверстия закрываются, а топливо в цилиндре заставляет нагнетательный клапан открываться.

  • Открытие порта Плунжер продолжает движение вверх, а спираль теперь открывает сливное отверстие и впускное отверстие, в результате чего давление в цилиндре падает.Теперь нагнетательный клапан закрывается давлением пружины.

  • Ход поршня через эффективный ход Эффективный ход определяется как расстояние, на которое перемещается поршень с момента закрытия порта (начало подачи топлива) до открытия порта (окончание подачи топлива).

  • Положение стойки и отношение к количеству подачи топлива • Точка закрытия отверстий фиксируется плоской головкой плунжера, но вращение плунжера изменяет точку, в которой спираль открывает отверстия, что эффективно изменяет эффективную эффективность инсульт.• Вертикальные прорези в плунжере могут быть совмещены с портами, так что подача топлива не происходит.

  • Управляющая рейка и шестерня с втулкой Управляющая рейка и зубчатая втулка вращают плунжер, чтобы изменить точку, в которой спираль заканчивает эффективный ход плунжера.

  • Типовые узлы нагнетательного клапана в закрытом и открытом положениях • Нагнетательные клапаны сокращают работу, требуемую для элементов насоса, за счет предотвращения возврата жидкости из линий нагнетания.• Это просто односторонние обратные клапаны. • Топливо, удерживаемое в напорных линиях нагнетательным клапаном между импульсами впрыска, называется топливом мертвого объема.

  • Механический синхронизирующий механизм продвижения Старые насосы со спиральной канавкой приводились в действие напрямую от зубчатой ​​передачи двигателя (распределительного вала) и имели статическую синхронизацию, так что закрытие порта происходило в одно и то же время, независимо от скорости двигателя или нагрузки. Это привело к плохим результатам по выбросам и экономии. Большинство впрыскивающих насосов со спиральной насадкой более позднего поколения имеют механизм изменения фаз газораспределения, который действует как посредник между приводной шестерней насоса (на двигателе) и муфтой распределительного вала насоса.Значения опережения могут составлять от 3 до 10 градусов угла поворота коленчатого вала.

  • АНЕРОИДЫ • Анероид - это датчик низкого давления. • Ограничивает заправку до тех пор, пока давление наддува не достигнет заданного значения. • Используется в гидромеханических насосах высокого давления в качестве компенсатора высоты, чтобы предотвратить впрыск большего количества топлива в цилиндр двигателя, чем имеется кислорода для его сжигания. • Также известен как ограничитель затяжки, датчик турбонаддува, воздушно-топливные клапаны (AFC) и ограничители дыма.

  • РАСПРЕДЕЛИТЕЛЬНЫЕ НАСОСЫ ВПРЫСКА К ДВИГАТЕЛЮ • Дозирующие насосы впрыска со спиральным портом синхронизируются с двигателем, которым они управляют, путем фазового закрытия порта на цилиндре №1. • Все топливные насосы должны быть точно синхронизированы с двигателем, которым они будут подавать топливо.

  • ТЕХНИЧЕСКИЙ СОВЕТ • Большинство ТНВД на североамериканских двигателях рассчитаны на цилиндр двигателя №1, но не все, поэтому следите за теми, которые этого не делают. • Цилиндр №6 (на рядном 6) является следующим по распространенности, но ничего не предполагает.• Всегда проверяйте спецификации в сервисной литературе.

  • ПРОЦЕДУРА ВРЕМЕНИ РАЗЛИВА • Время разлива - это процедура для установки времени работы впрыскивающего насоса, наблюдая за тем, как топливо выходит из отверстия для разлива форсунки. • Когда расход снижается до 6–10 капель в течение 10 секунд, инжектор считается синхронизированным. • Эта процедура сейчас используется только на старых двигателях.

  • ПРОЦЕДУРА ВРЕМЕНИ РАЗЛИВА (Продолжение)

  • ТЕХНИЧЕСКИЙ СОВЕТ • Несмотря на то, что это одобрено производителями старых автомобильных дизельных двигателей, использование таймера не считается достаточно точным методом тестирования коммерческого дизельного двигателя сроки.• Ограничьте использование индикатора времени для проверки работы механизмов опережения таймера.

  • ВНИМАНИЕ • Если при установке ТНВД возникает сопротивление, устраните и проверьте причину. • Прижимание насоса к его монтажному фланцу с помощью крепежных деталей может привести к повреждению привода насоса и почти наверняка приведет к выходу насоса из строя.

  • ФАЗИРОВАНИЕ • Фазирование впрыскивающего насоса устанавливает фазовый угол между отдельными насосными элементами и по существу гарантирует, что PC (закрытие порта) на каждом происходит с точным шагом.• На шестицилиндровом двигателе это будет ровно 60 градусов. • Эту процедуру будет выполнять не линейный механик, а специально обученный техник в специализированном магазине.

  • КАЛИБРОВКА • Калибровка ТНВД динамически уравновешивает количество подаваемого топлива, подаваемое отдельными насосными элементами. • Производительность каждого насосного элемента измеряется в калиброванных флаконах и отображается на мониторе.

  • СТЕНДОВЫЕ ИСПЫТАНИЯ • Ниже приведены некоторые тесты / регулировки, которые выполняются на испытательном стенде.• Фазирование • Калибровка полного количества топлива • Калибровка количества топлива при максимальных оборотах в минуту • Калибровка спада • Калибровка высоких оборотов холостого хода • Калибровка скорости холостого хода • Калибровка подачи топлива с помощью проворачивания • Запуск замедленной заправки ТЕХНИЧЕСКИЙ СОВЕТ • Никогда не поддавайтесь соблазну выполнить какую-либо регулировку дозирующего насоса со встроенным портом и спиралью, которая должна выполняться на стенде компаратора. • Для выполнения внутренней регулировки насоса требуется специальное обучение и оборудование.• Стоимость попытки регулировки топливных насосов за пределами спецификаций производителя может быть ценой замены двигателя.

  • КРИТИЧЕСКИЕ ЗНАЧЕНИЯ ДАВЛЕНИЯ В СИСТЕМЕ • Давление нагнетания • Давление, создаваемое нагнетательным насосом, обычно от 15 до 75 фунтов на квадратный дюйм. • Давление срабатывания клапана нагнетания • Обычно около 300 фунтов на кв. Дюйм при отсутствии остаточного давления в линии. • Остаточной линия давление • Давление мертвого объема топлива в напорной трубе. • Обычно около 2/3 NOP (давление открытия форсунки).• Давление открытия форсунки • Давление, необходимое для открытия клапана форсунки в гидравлическом инжекторе. • Обычно колеблется от 2200 до 5000 фунтов на квадратный дюйм. • Пиковое давление • Максимальное давление, которое может создать система. • Обычно от 2 до 10 раз NOP.

  • Обзор системы V-MAC I

  • Впрыскивающий насос Bosch PE7100 с приводом RE30 Rack

  • Вид в разрезе Bosch RE30Rack Привод

  • Узел в сборе
  • Компоненты датчика хода стойки

  • Датчик хода стойки при низком холостом ходу, положение топливной стойки

  • Датчик хода стойки при максимальной стойке (пиковое количество топлива за цикл) Положение

  • Колесо пульсаций

    • Импульсное колесо - единственный вращающийся компонент в корпусе реечного привода.• Импульсное колесо представляет собой зубчатое рабочее колесо, расположенное в задней части распределительного вала ТНВД и приводимое в действие в корпусе привода рейки.

  • РЕЗЮМЕ • Гидромеханические насосные устройства, использующие встроенные дозирующие насосы со спиральным портом, мало изменились с момента их введения в 1927 году, пока стандарты выбросов не законодательно закрепили их за коммерческими дизельными двигателями, соответствующими требованиям автомобильных дорог, несколько лет назад. • Система управления дозирующим насосом впрыска со спиральным портом эволюционировала от гидромеханического управления до электронных устройств управления, представленных в конце 1980-х годов.• Большинство насосов-дозаторов с рядным отверстием и спиральной спиралью крепятся на фланце к блоку цилиндров двигателя или крышке привода ГРМ, и приводятся в действие шестерней с частотой вращения распределительного вала. • Дозирующий насос со спиральным отверстием приводится в действие на один полный оборот (360 градусов) за полный рабочий цикл двигателя (720 градусов в четырехтактном цикле). • Распределительный вал насоса поддерживается коренными подшипниками и приводится в действие распределительным валом, который также действует как масляный поддон. • Рабочие толкатели насосного элемента подпружинены для перемещения по профилям кулачков.

  • РЕЗЮМЕ (продолж.) • Геометрия кулачка определяет работу насосного элемента. • Для каждого цилиндра двигателя имеется насосный элемент. • Насосный элемент состоит из неподвижного цилиндра и поршневого поршня. • Плунжер при производстве фрезерован с дозирующей выемкой, известной как спираль или спираль. • Вращательное положение плунжера определяет точку совмещения сливного отверстия ствола и спирали. • Плунжеры вращаются синхронно с помощью зубчатой ​​рейки, зацепленной с прорезями управляющих втулок, которые сами прикреплены к плунжерам.• Эффективный ход плунжера начинается при закрытии порта и заканчивается при открытии порта. • Нагнетательные клапаны отделяют насосные элементы от каждой трубы высокого давления и служат для удержания мертвого объема топлива при значениях давления, составляющих примерно две трети NOP. • Нагнетательные клапаны предназначены для уплотнения перед посадкой.

  • РЕЗЮМЕ (продолжение) • Нагнетательные клапаны увеличивают объем, доступный для хранения мертвого объема топлива в трубопроводе высокого давления, на рабочий объем втягивающей манжеты. • Большинство впрыскивающих насосов со спиральной спиралью более позднего поколения имеют механизм изменения фаз газораспределения, который действует как посредник между приводной шестерней насоса (на двигателе) и муфтой распределительного вала насоса.• Топливные насосы с гидромеханическим управлением часто включают анероидное устройство и компенсатор высоты, чтобы предотвратить впрыск большего количества топлива в цилиндр двигателя, чем имеется кислорода для его сжигания. • Дозирующие насосы со встроенным портом и спиралью должны быть точно синхронизированы с двигателем. • В насосах для впрыска топлива со спиральным портом и спиральным отверстием с электронным управлением компании Caterpillar и Bosch используются аналогичные принципы работы. • Впрыскивающие насосы Bosch P7100 и P8500 представляли собой дозирующие нагнетательные насосы со спиральным портом, адаптированные для электронного управления.

  • РЕЗЮМЕ (продолжение) • Основными выходами ECM, используемыми для управления инжекторными насосами Bosch P7100 и P8500, являются привод стойки и Econovance. • Синхронизация топливных насосов Bosch P7100 и P8500 с двигателем требует использования электронного устройства синхронизации Mack.

  • Есть вопросы? • Спасибо!

  • .

    BOSCH VE INJECTION PUMP MANUAL

      ТНВД

    • Топливный насос - это устройство, которое перекачивает топливо в цилиндры дизельный двигатель или, реже, бензиновый двигатель.
      инструкция

    • (машины или устройства) Работает вручную, а не автоматически или в электронном виде
    • рук или рук; «ловкость рук»
    • Из или сделано своими руками
    • Использование или работа руками
    • небольшой справочник
    • руководство по оружию: (военное) предписанное учение по обращению с винтовка
      bosch

    • Иероним ( ок. 1450–1516), голландский художник. Его очень подробные работы обычно заполнены полулюдьми, полуживотными существами и гротескными демоны в обстановке, символизирующей грех и глупость
    • Robert Bosch GmbH - технологическая корпорация, основанная Роберт Бош в Штутгарте, Германия, 1886 год.
    • Bosch - небольшой лунный кратер, расположенный недалеко от Северного полюса Луны. это расположен к северо-востоку от Рождественского W
    • Голландский художник (1450-1516)
      ve

    • Ве или Ва? (?) - дополнительная буква арабского алфавита, образованная от фа? (?) с двумя дополнительными точками, представляющими звонкий губно-зубной фрикативный звук.Иногда он используется в арабском языке для написания определенных слов иностранного происхождения, например ????? volvo (Вольво) и ????? viyena (Вена).
    • .ve - это национальный домен верхнего уровня в Интернете (ccTLD) для Венесуэла.
    • Ve (В, в) - третья буква кириллицы, обозначающая звук. По форме он похож на заглавную латинскую букву B, но произносится по-другому.
    bosch ve инжекторный насос, инструкция по эксплуатации - ACDelco 215-617

    Комплект воздушного нагнетательного насоса ACDelco 215-617


    OE Service Реакция впрыска вторичного воздуха Системы

    Если вы ищете соответствие оригинальному оборудованию спецификации запасной части для вашего автомобиля GM, доверьте ACDelco работа сделана.Наша линейка сервисных топливных форсунок OE, модулей управления, массового воздуха Датчики потока, Датчики кислорода, Клапаны рециркуляции выхлопных газов, Коллектор Датчики абсолютного давления, датчики положения дроссельной заслонки, клапаны регулирования холостого хода и системы реакции вторичного впрыска воздуха помогут вашему автомобилю GM работать как эффективно и чисто, как в тот день, когда он сошел с конвейера. Доверьтесь ACDelco в помощи ваш автомобиль чистый и зеленый.

    Сервисное обслуживание оригинального оборудования ACDelco Системы подачи вторичного воздуха - идеальная замена изношенным оригинальная комплектация на любой автомобиль GM.В комплекте с насосами, переключающими клапанами, трубы, трубки и обратные клапаны. Снижение выбросов вредных углеводородов выбросы.

    Нагнетательный насос

    1. Верхнее уплотнение 2. Второе уплотнение ТНВД имеет две крышки. Крышка 1 - это крышка для электроники. Обложка 2 - это крышка механики. Я знаю, что протекает только верхняя крышка, значит, ты счастливый. Если вы хотите заменить оба уплотнения крышки, вам необходимо перенастроить насос. позже. Регулировка осуществляется перемещением верхней и второй крышки в сборе назад. и вперед по отношению к основному корпусу (остальная часть насоса под линией 2).

    Подключение ТНВД

    Я использовал короткое соединение через двухсторонний разъем чтобы можно было легко отсоединить ткацкий станок. это будет обернуто ткацкой лентой как только я буду счастлив, он прекратит попадание влаги. Я также попробую некоторые башмаки для кольцевых соединителей на самом насосе. Я еще не тестировал так как ТНВД очень плохо работают, когда в них нет топлива, поэтому я подожду на день ввода в эксплуатацию

    инструкция по эксплуатации ТНВД bosch ve Новый и улучшенный насос Rio plus 600 PT - это система водяного насоса Вентури, разработанная с высокой эффективностью и надежностью при более низкая стоимость.Разработано с поколением nebyt в технологии магнитных двигателей и предлагают лучшее высокопроизводительное решение в аквариумной индустрии. Используйте эти насосы либо для снятия протеина, либо для закачки CO2 для посевов аквариумы.

    Feature
    Enhanced Motor Design
    Versatile
    High Flow Оценить
    Низкое потребление энергии
    Тихая работа и охлаждение
    Полностью Погружной магнитный ротор

    Керамический вал и подшипники
    Морской и пресноводная среда
    Описание
    Новый улучшенный Rio Plus Aqua Насосы и силовые головки представляют собой универсальную систему водяных насосов, разработанную с высокой эффективность и надежность при более низкой стоимости.Разработано с использованием следующего поколения магнитно-роторная технология, насосы и силовые головки Rio Plus Aqua предлагают лучшее высокоэффективное решение в аквариумной индустрии. Самый большой и самый мощные модели обеспечивают отличную производительность в мокрых или сухих фильтрах и в скиммеры протеина Вентури, когда необходимы высокое давление и высокая скорость потока. Надежный и тихие, насосы и силовые головки Rio Plus Aqua не используют масло для работы, поэтому они не может загрязнять водную среду. Полный ассортимент водных насосов Rio Plus и Powerheads, предназначенные для работы в различных водных средах, дают лучший выбор для любителей по конкурентоспособной цене.


    .

    Ошибка

    Перейти к основному содержанию

    ☰Боковая панель

    Мои курсы
    • Школы Школа искусств, дизайна и архитектуры (ARTS) Школа бизнеса (BIZ) Школа химической инженерии (CHEM) –SРуководства для студентов (CHEM) - Инструкция по написанию отчета (ХИМ) Школа электротехники (ELEC) Школа инженерии (ENG) Школа наук (SCI) Языковой центр Открытый университет Библиотека Программа педагогической подготовки университета Аалто UNI (экзамены) Песочница
    • КОРОНАВИРУС ИНФОРМАЦИЯ Коронавирус - tietoa opiskelijalle Коронавирус - информация для студентов Коронавирус - информация для студента Koronaviruksen vaikutus opiskeluun: kysymyksiä ja westauksia Влияние коронавируса на исследования: вопросы и ответы Coronaviruset och studierna: frågor och svar Corona в помощь учителям
    • Ссылки на услуги Мои курсы - Инструкции для учителей - Преподаватель запишет онлайн-сессию со специалистом - Цифровые инструменты для обучения - Инструкции по защите персональных данных для учителей - Инструкции для студентов
    .

    Принципы, эксплуатация и обслуживание судов

    Материалы исследования морской инженерии Информация для морских инженеров

    Искать:

    • Дом
    • Экзамен MEO
    • Безопасность
      • Пожаротушение
      • Пожарные извещатели
      • Дегазация
    • Общие
      • Котлы
      • Насосы
      • Компрессоры
      • Смазочное масло
      • Очистка сточных вод
      • Система инертного газа
      • Кондиционер
      • КИП
      • Гидравлика
      • Теплообменники
      • Рулевой механизм
      • Холодильное оборудование
      • Коррозия
      • Сварка
      • Очистители
    • Мотор
      • Дизельные двигатели
      • Вибрация
      • Турбокомпрессоры
      • Инструменты
    • Скачать
      • Вопросы и ответы по дизельным двигателям 1
      • Вопросы по MEO, класс 2
      • Контрольные листы MEO класса 1
    • Контрольные списки
    • Военно-морской флот
      • Руль
    • Электрооборудование
    • Квадрокоптер
      • Двигатель и ESC Fire
      • Подключение сонара
    .

    Смотрите также