Авторизация |
![]() |
Проверка лямбда зонда осциллографомПроверка датчика кислорода с помощью осциллографа.Проверка датчика кислорода с помощью осциллографа.Датчик кислорода устанавливается в потоке отработавших газов двигателя и служит для определения наличия кислорода в отработавших газах. Когда двигатель работает на обогащённой топливо-воздушной смеси, уровень содержания кислорода в отработавших газах понижен, при этом датчик генерирует сигнал высокого уровня напряжением 0,65…1,0V. При поступлении сигнала высокого уровня от датчика кислорода, блок управления двигателем начинает уменьшать длительность впрыска топлива, тем самым обедняя топливо-воздушную смесь. Когда двигатель работает на обеднённой топливо-воздушной смеси, уровень содержания кислорода в отработавших газах повышен, при этом датчик генерирует сигнал низкого уровня напряжением 40…200mV. При поступлении сигнала низкого уровня от датчика кислорода, блок управления двигателем начинает увеличивать длительность впрыска топлива, тем самым обогащая топливо-воздушную смесь. Таким образом, по сигналу от датчика кислорода блок управления двигателем корректирует длительность впрыска топлива так, что состав топливо-воздушной смеси оказывается максимально близким к стехиометрическому (идеальное соотношение воздух/топливо). Исправный датчик кислорода начинает работать только после прогрева чувствительного элемента до температуры не ниже 350°С. Существуют одно-, двух-, трёх- и четырёх-проводные двухуровневые циркониевые датчики кислорода BOSCH. Одно- и двух-проводные датчики кислорода устанавливаются в выпускном коллекторе двигателя максимально близко к выпускным клапанам газораспределительного механизма и прогреваются до рабочей температуры за счёт высокой температуры отработавших газов. Трёх- и четырёх-проводные датчики кислорода прогреваются до рабочей температуры за счёт встроенного электрического нагревательного элемента и могут быть установлены на значительном расстоянии от выпускных клапанов газораспределительного механизма двигателя. При условии сгорания стехиометрической топливо-воздушной смеси, напряжение выходного сигнала лямбда-зонда равно 445…450mV. Но расстояние от выпускных клапанов газораспределительного механизма двигателя до места расположения датчика и значительное время реакции чувствительного элемента датчика приводят к некоторой инерционности системы, что не позволяет непрерывно поддерживать стехиометрический состав топливо-воздушной смеси. Практически, при работе двигателя на установившемся режиме, состав смеси постоянно отклоняется от стехиометрического в диапазоне ±2…3% с частотой 1…2раза в секунду. Этот процесс чётко прослеживается по осциллограмме напряжения выходного сигнала датчика кислорода.
Осциллограмма напряжения выходного сигнала исправного датчика кислорода BOSCH. Двигатель работает на холостом ходу. Частота переключения сигнала составляет ~1,2Hz. Проверка выходного сигнала датчика. Измерение напряжения выходного сигнала датчика кислорода блок управления двигателем производит относительно сигнальной “массы” датчика. Сигнальная “масса” двух- и четырёх-проводных датчиков кислорода BOSCH выведена через отдельный провод (провод серого цвета идущий от датчика) на разъём датчика. Сигнальная “масса” одно- и трёх- датчиков кислорода BOSCH соединена с металлическим корпусом датчика и при установке датчика автоматически соединяться с “массой” автомобиля через резьбовое крепление датчика. Выведенная через отдельный провод на разъём датчика сигнальная “масса” датчика кислорода в большинстве случаев так же соединена с “массой” автомобиля. Встречаются блоки управления двигателем, где провод сигнальной “массы” датчика кислорода подключен не к “массе” автомобиля, а к источнику опорного напряжения. В таких системах, измерение напряжения выходного сигнала датчика кислорода блок управления двигателем производит относительно источника опорного напряжения, к которому подключен провод сигнальной “массы” датчика кислорода. Для просмотра осциллограммы напряжения выходного сигнала датчика кислорода, разъём осциллографического щупа должен быть подключен к любому из аналоговых входов №1-4 USB Autoscope II, чёрный зажим типа “крокодил” осциллографического щупа должен быть подсоединён к “массе” двигателя диагностируемого автомобиля, пробник щупа должен быть подсоединён параллельно сигнальному выводу датчика (провод чёрного цвета идущий от датчика). Схема подключения к датчику кислорода BOSCH (на основе оксида циркония). В окне программы “USB Осциллограф”, необходимо выбрать подходящий режим отображения, в данном случае “Управление => Загрузить настройки пользователя => Lambda”. Когда лямбда-зонд прогревается до рабочей температуры, его выходное электрическое сопротивление значительно снижается, и он приобретает способность отклонять опорное напряжение, поступающее от блока управления двигателем через резистор с постоянным электрическим сопротивлением. В большинстве блоков управления двигателем, значение опорного напряжения равно 450mV. Такой блок управления двигателем считает датчик кислорода готовым к работе только после того, как вследствие прогрева датчик приобретает способность отклонять опорное напряжение в диапазоне более чем ±150…250mV. Осциллограмма напряжения выходного сигнала исправного датчика кислорода BOSCH. Пуск прогретого до рабочей температуры двигателя. Время прогрева лямбда-зонда до рабочей температуры равно ~30S. Опорное напряжение на сигнальном проводе датчика кислорода некоторых блоков управления двигателем может иметь другое значение. Например, для блоков управления производства Ford оно равно 0V, а для блоков управления двигателем производства Daimler Chrysler – 5V. Типовые неисправности. Низкая частота переключения выходного сигнала датчика кислорода указывает на увеличенный диапазон отклонения состава топливо-воздушной смеси от стехиометрического. Осциллограмма напряжения выходного сигнала неисправного датчика кислорода BOSCH. Двигатель работает на холостом ходу. Частота переключения сигнала занижена и составляет ~0,6Hz. Снижение частоты переключения выходного сигнала датчика кислорода может быть вызвана возросшим временем перехода выходного напряжения зонда от одного уровня к другому из-за старения или химического отравления датчика. Неисправность может привести к раскачке частоты вращения двигателя на режиме холостого хода и к потере “приёмистости” двигателя. Ресурс датчика содержания кислорода в отработавших газах составляет 20 000…80 000 km. Из-за старения, выходное электрическое сопротивление датчика кислорода снижается при значительно более высокой температуре чувствительного элемента до значения, при котором датчик приобретает способность отклонять опорное напряжение. Из-за возросшего выходного электрического сопротивления, размах выходного напряжения сигнала датчика кислорода уменьшается. Стареющий датчик кислорода легко можно выявить по осциллограмме напряжения его выходного сигнала на таких режимах работы двигателя, когда поток и температура отработавших газов снижаются. Это режим холостого хода и малых нагрузок. Практически, стареющий датчик кислорода всё ещё работает на движущемся автомобиле, но как только нагрузка на двигатель снижается (холостой ход), размах сигнала быстро начинает уменьшаться вплоть до пропадания колебаний. Осциллограмма напряжения выходного сигнала неисправного датчика кислорода BOSCH. Двигатель работает на холостом ходу. Переключения выходного сигнала отсутствуют. Напряжение выходного сигнала стареющего датчика кислорода при работе двигателя на холостом ходу становится почти стабильным, его значение становится близким опорному напряжению 300…600mV.
Поделиться ссылкой:Похожие статьиПроверяем самостоятельно лямбда-зонд. Методика диагностики.
Все современные автомобили оборудованы датчиками кислорода (лямбда зонды). Они являются очень важной составляющей системы впрыска топлива на инжекторных двигателях. При выходе из строя лямбда зонда, увеличивается расход топлива причем в разы!!! у меня мотор 1,6 кушал 20 литров на 100 км пробега. Для проверки лямбды не достаточно иметь простой мультиметр, так как сигнал с датчика на переходных режимах меняется практически мгновенно, и тестер просто не успевает его измерить. Поэтому было принято решение, сделать простой недорогой тестер, специально для проверки датчиков кислорода. В качестве индикации служит линейка из 10 светодиодов которая позволяет оперативно контролировать выходной сигнал с датчика и определить его исправность. Внимание! датчики кислорода бывают одно, двух, трех и четырех проводные! Однопроводные очень старые модели с ними все понятно масса и сигнальный провод. В двух проводных датчиках черный провод сигнал, а серый масса. Трех проводные имеют 2 белых провода подогрев, черный сигнал, масса берется с коллектора. Четырех проводной датчик также как 3х проводной 2 белых подогрев, черный сигнал, серый масса. Тестер для проверки лямбда-зонда своими рукамиСхема тестера для проверки лямбда зонда довольно проста, ее сердце микросхема-генератор LM3914, которая может работать в 2х режимах, бегущая полоса или бегущая точка. на входе стоит делитель который настроен на входное напряжение 0-1 V, каждый светодиод 0,1 V. Чего как раз достаточно практически для всех типов зондов, обычно диапазон лямбда зондов 0-0,9 V. Настройка заключается в подстройке делителя напряжения на входе тестера, подстроечным резистором. Для этого нужен регулируемый блок питания и мультиметр. Необходимо выставить напряжение 0,5 V на блоке питания и добиться загорания 5 и 6 светодиодов. т.е. средина светодиодной линейки, далее поднимаем напряжение до 0,9 V и смотрим чтоб горел предпоследний светодиод. На этом настройка окончена. Печатная плата Что касается корпуса, здесь на усмотрение. Кто что придумает, так он и будет выглядеть. Конечно же есть и другие варианты схем такого тестера, собраны они также на микросхеме-генераторе LM3914: Если внимательно присмотреться к схеме каждого варианта, можно найти небольшие различия включения микросхемы, здесь выбирать только Вам! Кислородный датчик можно проверить также простым мультиметром, зная основные параметры работы датчика.Переводим режим мультиметра в измерение постоянного напряжения в пределах «20 В». Включаем зажигание автомобиля, но не заводим двигатель. На приборе должно быть значение «0,45 В». Это нормальное показание, опорное напряжение в норме. Если оно отсутствует или сильно занижено, значит, блок управления двигателем не выдает необходимого опорного напряжения на лямбда-датчик. Он правильно работать не будет. Нужно искать проблему в ЭБУ мотора. В случае двухпроводной лямбды может отсутствовать «земля» на сером проводе. Возможен обрыв на нем или блок управления не «присылает» минус – проблемы в электронике блока. Чтобы в этом убедиться, можно минусовый щуп мультиметра подключить к «минусу» аккумулятора. Если на приборе покажутся заветные «0,45 В», значит нет «массы» в ЭБУ. Проверяем работоспособность активного элемента лямбда-зондаЩупы прибора оставляем в таком же положении. Заводим мотор автомобиля, даем ему немного прогреться. Показания мультиметра должны изменяться приблизительно в течение 1 секунды от 0,1 до 0,9 В. Если они неизменные, то датчик неисправен.
Чтобы сильнее убедиться в работоспособности лямбды, можно снять с ресивера вакуумный шланг, то есть увеличить количество воздуха во впускном коллекторе после ДМРВ (датчика массового расхода воздуха), тем самым обеднить смесь. Показания мультиметра должны измениться, то есть, границы амплитуды изменения напряжения поменяются. Обманка кислородного датчика (лямбда-зонда)Есть категория автолюбителей, предпочитающих обход различных электронных узлов автомобиля. Обманка всё решит! Здесь выскажу своё личное мнение.
Тем не менее, приведём варианты обманок кислородного датчика Как видим по схемам обманок, они типовые. Но, покупая хороший автомобиль, нужно предполагать расходы на его содержание и обслуживание. Такие варианты отключения датчиков ни к чему хорошему не приводят!
Как проверить лямбда-зонд на работоспособностьИнжекторные двигатели экономичны и дружелюбны к экологии в отличии от карбюраторных моторов. Высоких показателей инженеры добились благодаря датчикам в системе питания. Один из датчиков, который непосредственно влияет на смесеобразование – это лямбда-зонд или кислородный датчик. Содержание статьи: Если он выходит из строя, можно наблюдать потерю мощности, большой расход топлива, нестабильную работу мотора. Зачем в автомобиле нужен лямбда-зонда, место расположенияЛямбда-зонд необходим для измерения коэффициента содержания кислорода в горючей смеси. Он устанавливается всегда в районе приемной трубы до катализатора и измеряет объем несгоревшего кислорода в продуктах сгорания. Эта информация позволит ЭБУ готовить оптимальную смесь. Наиболее эффективно сгорает смесь, в которой содержится 14,7 частей воздуха и одна часть топлива. Это оптимальные показатели, если кислород присутствует в больших количествах, то смесь бедная, если воздуха меньше, то богатая.
Сгорание богатой смеси менее эффективно – можно наблюдать снижение мощности, повышенный расход топлива. Так как моторы в автомобилях функционируют на совершенно разных режимах, то оптимальное соотношения воздуха и топлива может не соблюдаться. Для контроля качества смеси в системах питания применяют кислородные датчики. На основе сигналов от лямбды ЭБУ может оценить качество смеси. Если обнаружены показатели, которые не соответствуют нормам, смесь корректируется. Принцип работы кислородного датчикаПринцип действия кислородного датчика достаточно простой. Лямбда-зонд должен сравнивать показания с какими-то идеальными результатами, чтобы понимать, как меняется процент кислорода в смеси, поэтому замеры проводятся в двух местах – измеряется атмосферный воздух и продукты сгорания. Такой подход позволяет датчику чувствовать разницу, если соотношения топливной смеси меняется. ЭБУ должен получать от лямбда-зонда электрический импульс. Для этого датчик должен уметь преобразовывать замеры в электрические сигналы. Для измерения применяются специальные электроды, которые могут вступать с кислородом в реакцию. В работе лямбды используется принцип гальванических элементов – смена условий химических реакций приводит к изменению напряжения между двумя электродами. Когда смесь богатая, а содержание кислорода за нижним порогом, тогда напряжение растет. Если смесь обедненная, напряжение будет падать. Далее импульс, который возникает на этапе химических реакций, отправляется на ЭБУ, где параметры сравниваются с записанными в памяти топливными картами. В результате корректируется работа системы питания.
Датчик кислорода работает на химических реакциях, но при этом конструкция его относительно простая. Главный элемент – специальный наконечник из керамических материалов. В качестве сырья используется диоксид циркония, а реже – диоксид титана. Наконечник покрыт напылением из платины – именно этот слой и вступает в реакцию с кислородом. Одной стороной этот наконечник контактирует с выхлопными газами, другой стороной – с воздухом в атмосфере. Электроды лямбда-зонда имеют одну особенность. Так, чтобы реакция проходила эффективнее и показатели были точными, замеры содержания кислорода в выхлопе производятся при условии определенных температур. Для того, чтобы наконечник вышел на рабочие характеристики и нужную электропроводимость, температура среды должна составлять 300-400 градусов. Для обеспечения нужного режима температур изначально лямбда-зонд устанавливался в непосредственной близости к выпускному коллектору. Это обеспечивало нужную температуру после прогрева ДВС. В работу датчик вступал не сразу. До того, как лямбда достаточно нагреется и начнет выдавать точные параметры, ЭБУ использовало сигналы других датчиков. Оптимальная смесь в процессе прогрева не приготавливалась. Некоторые модели кислородных датчиков оснащены электрическими нагревателями. Благодаря им лямбда может быстрее выходить на рабочие температурные режимы. Подогрев использует энергию бортовой сети автомобиля. Признаки и причины неисправности датчикаПри неисправном лямбда-зонде выхлопные газы становятся более токсичными. Определить это можно при помощи специального диагностического оборудования. При этом никаких внешних признаков не будет, также, как и не будет никакого особенного запаха. Вырастает расход топлива. Водители, как правило следят за тем, насколько наполнен топливный бак, стараются определить скорость, при которой расход минимален. Повышенный расход будет сразу же заметен. В зависимости от серьезности поломки датчика кислорода, расход вырастет в пределах от 1 л до 4 л. Перегрев каталитического нейтрализатора. Если лямбда неисправна, то в ЭБУ подается неверный сигнал. Это может приводить к неправильной работе катализатора. Он перегревается вплоть до красного цвета и выходит из строя. Автомобиль будет дергаться, и водитель сможет услышать хлопки. Лямбда перестает формировать правильные сигналы, в результате – нестабильный ХХ. Обороты могут колебаться в очень широких диапазонах.
Снижаются динамические характеристики. Автомобиль теряет мощность. Эти признаки можно наблюдать в сильно запущенных случаях. Датчик не работает на холодном моторе, а автомобиль всячески сигнализирует о неисправности. Среди причин поломок можно выделить:
Проверка лямбда-зонд с помощью диагностического устройстваВ большинстве случае ДВС сам подсказывает есть ли неисправности в работе датчиков. Самым быстрым и эффективным способом диагностики в таком случае будет подключение ODBII сканера. Из доступных на рынке вариантов рекомендуем обратить внимание на модель корейского производства Scan Tool Pro Black Edition. Данное устройство относится к бюджетному сегменту, но в отличие от китайских аналогов на 8-битном чипе, имеет 32-битную базу, что позволяет осуществлять диагностику не только двигателя, но и других систем автомобиля (коробку передач, трансмиссию, ABS, ESP, систему кондиционирования и т.д.). Сканер достаточно прост в использовании, имеет широкий функционал и совместим с большинством автомобилей начиная с 1993 года выпуска. Если все плохо, то в ЭБУ будет выдавать следующие ошибки – это P0131, P0134, P0171. Более подробно о них в видео ниже. Также будет загораться лампочка «проверьте двигатель», но здесь точно установить причину можно только при помощи диагностики. Чек загорается и в случае других проблем. Как проверить лямбда-зонд мультиметромКогда наблюдаются рывки при движении, повышенный расход горючего, и горящий “чек”, то стоит провести диагностику. Эти признаки могут говорить и о других неисправностях, но если есть мультиметр, то можно проверить кислородный датчик своими руками. Специалисты рекомендуют проверять лямбду через измерение напряжений.
Но прежде любых измерений нужно прогреть ДВС. Если лямбда холодная, она не будет работать. Также рекомендуется по возможности снять датчик и осмотреть его и проводку на предмет грязи и повреждений. Если датчик деформирован, электрод поцарапан или покрыт сажей, нагаром, то лучше его заменить. Измерения напряжения в цепи подогреваВключают зажигание, щупами протыкают провода, которые идут к нагревателю. Можно также втыкать щупы мультиметра в разъем. Напряжение будет примерно равно напряжению в бортовой сети. Если двигатель не запущен, то напряжения может и не быть. Обычно плюс приходит к нагревателю напрямую. Минус подает блок управления. Если отсутствует плюс, следует проверить цепи от аккумулятора до датчика. Если отсутствует минус, тогда нужно проверить цепь от ЭБУ до датчика. Проверка нагревателяМожно проверить работоспособность кислородного датчика при помощи омметра. Очень часто поломка связана со спиралью подогрева или проводкой к ней. Для проверки омметр присоединяют между контактами нагревателя. Если нагреватель исправен, то омметр покажет сопротивление от 2 до 10 ОМ. В цепи подогрева сопротивление будет от 1 кОм до 10 мОм. Если сопротивления нет, то стоит поискать обрыв в проводке. Опорное напряжениеИмея под рукой мультиметр, можно проверить опорное напряжения. Для этого включают зажигание, затем измеряют напряжение между проводом сигнала и массой. В правильно работающей лямбде напряжение будет в пределах 0,45 В. Если имеются отличия хотя-бы на 0,2 В, то проблемы с сигнальной цепи или плохая масса. Проверка сигнала с датчика осциллографомДвигатель необходимо прогреть. Осциллограф подключают между сигналом и массой. Затем поднимают обороты до 3000 и наблюдают за изменениями показаний. Сигнал должен меняться в пределах от 0,1 В до 0,9 В. Если осциллограф точный и видно, что изменения в более узком диапазоне, то лямбда неисправна.
Также стоит засечь время, в течении которого показания опускаются от большего уровня к меньшему. За 10 секунд показания должны меняться 10 раз. Если смены происходят реже, тогда может появиться ошибка под датчику. 4 способа проверки лямбда зонда в домашних условияхКак проверить лямбда зонт самостоятельно? С этим вопросом сталкиваются большое количество владельцев автомобилей как отечественного производства, так и иномарок. В сегодняшней статье я расскажу вам о четырех полноценных способах проверки датчиков кислорода. Кстати проверка этих датчиков может потребоваться если сканер показывает ошибку, связанную с лямбда зондом, например низкий уровень сигнала датчика кислорода или увеличился расход топлива.
Датчики лямбда зонда – какие бывают?Современные датчики кислорода имеют 4-х проводную систему, но бывают исключения! Нередко встречаются одно, двух и трех проводные датчики лямбда зонд. ![]() У четырехпроводного датчика два провода идут на цепь подогрева и один провод – сигнальный. Также один провод идёт на массу проверки лямбда зонда, которую можно произвести самостоятельно. Проверка напряжения в цепи подогрева датчика
Для проверки напряжения в цепи подогрева датчика кислорода нам понадобится вольтметр.
Напряжение на этих проводах должно равняться напряжению аккумуляторной батареи, примерно 12, 45В. Плюс приходит обычно приходит на нагреватели датчика кислорода напрямую через предохранители, а минус подается с блока управления двигателем. Поэтому если на нагреватель датчика кислорода не приходит плюс, то смотрите цепь, аккумулятор, предохранитель и датчик кислорода. Кстати в некоторых моделях автомобиля возможно наличие реле в этой цепи. Но если нет минуса, то смотрите всю цепь до блока управления. Возможно потерялся контакт в каком либо разъеме, либо блок управления по каким то причинам не видит минус. Проверка исправности нагревателя лямбда зонда при помощи тестераДля того, чтобы проверить сам нагреватель лямбда зонда путем замера сопротивления нам понадобиться Омметр, то есть тестер или мультиметр в режиме измерения сопротивления. Отсоедините разъем датчика кислорода и измеряете сопротивление между проводами нагревателя. Сопротивление может быть разное, но обычно оно находится в пределах 2-10 Ом. Если сопротивление не показывается вообще, то скорее всего в нагревателе датчика кислорода (лямбда зонда) произошёл обрыв и он требует замены. Проверка опорного напряжения датчика кислорода (лямбда зонд)
И так первую проверку лямбда зонда, которую мы можем провести самостоятельно, это проверка опорного напряжения. Для этого нам понадобится тестер в режиме Вольтметра. Включаем зажигание и замеряем напряжение между сигнальным проводом и массой. В большинстве моделей автомобилей это напряжение должно равняться 0,45В. Допускаются небольшие отступления от нормы как в ту так и в другую сторону, но здесь уже все зависит от качества и состояния проводки в автомобиле. Проверка сигнала лямбда зондаДля проверки нагревателя лямбда зонда желательно иметь осциллограф либо осциллоскоп, но так же подойдет мото-тестер или хотя бы стрелочный, но не цифровой вольтметр. В принципе для данного способа проверки подойдет и цифровой вольтметр, но он более инертный, поэтому намного хуже реагирует на изменение показаний. И так теперь проверяем сам сигнал лямбда зонда! Это самый сложный и ответственный способ. Первое, что необходимо сделать это обзавестись специальными приборами, которые я перечислил выше. И так, запускаем двигатель прогреваем его до рабочей температуры. Дело в том, что датчик кислорода начинает работать только после прогрева, не после прогрева ДВС, а после прогрева датчика кислорода. На эту процедуру блоком отводиться определенное время, поэтому проверять сразу датчик кислорода нет никакого смысла. Обычно, датчик кислорода начинает работать при температуре двигателя 60 – 70 градусов. Подсоединяете провода щупа между сигнальными проводами и проводами массы, поднимаете обороты двигателя примерно до 3000 об/мин, и наблюдаете за изменениями показаний лямбда зонда. Сигнал с датчика кислорода должен меняться от 0,1 до 0,9 Вольт. Если изменения происходят в меньшем диапазоне, то прибор просто не успевает реагировать, либо датчик кислорода неисправен и требует замены. Так же при 3000 об/мин засеките время, при котором меняются показания от большего к меньшему. При оптимальном варианте работы ДК за 10 секунд должно произойти 8 – 9 изменений. Если показания датчика изменяются реже, то вероятна ошибка медленный отклик датчика кислорода и он подлежит замене. Видео: 4 способа проверки датчика кислорода и лямбда зондаАвтомобильный осциллограф для диагностики автомобиляНайти неисправность стало гораздо проще. Не надо разбирать и подкидывать каждую запчасть, что удешевляет поиск неисправности и экономит время. Автомобильный осциллограф применяется для диагностики двигателя, датчиков электронной системы управления, генератора, стартера, аккумулятора. Нужен при комплексной автомобильной диагностике, дополняет проверку сканером. Позволяет делать дефектовку мотора без вскрытия. Осциллограф – это прибор, который снимает параметры времени и амплитуды электрического сигнала. При неисправностях автомобиля, также нужны эти характеристики. То есть как изменяется сигналы датчика, катушки, форсунки по времени. Какой выбрать осциллограф для диагностики автоРассмотрим наиболее удобные и информативные приборы. USB Autoscope ПостоловскогоНа первом месте в рейтинге практиков стоит осциллограф Постоловского USB Autoscope IV. Имеет обширные диагностические функции. Преимущества
Полная документация по работе с прибором. Подробно описаны скрипты, схемы подключения. Есть видео инструкция на сайте производителя. Отзывчивая поддержка. Мотодок 3Вторым в списке рейтинга осциллографов для диагностики автомобиля любой марки стоит Мотодок 3. Имеет схожие характеристики. Преимущества и недостатки
Для примера приведены только два осциллографа для диагностики авто. Существуют и другие приборы: отличаются ценой, производителем, но принцип измерения одинаков. Самое главное иметь опыт в чтении осциллограмм к каждой марке автомобиля. Диагностика осциллографом автомобиля: как проводитьПользоваться осциллографом не составляет особых трудностей у диагностов. Методика подробно описана в инструкциях к прибору. Главное знать места подключения к датчику положения коленчатого вала для проведения скрипта Шульгина по эффективности цилиндров. Для различных марок автомобилей ДПКВ может находится возле задающего диска или маховика. Проверка датчиков осциллографомДПКВДатчик положения коленчатого вала. Нужен для синхронизации искры и форсунок по такту сжатия. Сигнал имеет синусоидальную форму с разрывом. Форма сигнала с одинаковой амплитудой. Если есть отклонения, значит задающий диск имеет не равномерность вращения или люфт. ![]() Методика измерения
ДПРВДатчик положения распределительного вала. Имеет прямоугольную форму сигнала амплитудой 12,3 – 12,7 вольта. Полезно снимать одновременно сигналы ДПКВ и ДПРВ для определения фазы впрыска и смещения распределительных валов относительно друг друга. Но как правило этот параметр проверки ДВС есть на сканере.
![]() ДМРВДатчик массового расхода воздуха применяется на бензиновых двигателях для измерения объема прошедшего воздуха. Основной параметр для диагностики — это его АЦП равное 0,996 вольт при включенном зажигании. При углубленной диагностике ДМРВ, нужно померить время релаксации – период, за который, датчик выходит в нулевое положение. ![]() Ниже представлена осциллограмма неисправного ДМРВ. Время перехода 20 мс, а напряжение при нулевом объеме воздуха 1,130 вольт. Авто с таким датчиком будет расходовать много топлива и терять мощность.
![]() Немаловажно проверить пик выхода датчика на максимальный уровень напряжения. Для этого нужно снять сигнал с ДМРВ на заведенном ДВС, при резко нажатой педали газа. Чем больше показания к 5 вольтам, тем датчик имеет большую отдачу и авто будет эластичнее. ![]() Работа с автомобильным осциллографом не страшна для начинающих диагностов. Нужно тщательно изучить инструкцию по работе с прибором и применять на практике. Чем больше опыт подключения к конкретной марке, тем быстрее и точнее поиск неисправностей. ДПДЗДатчик положения дроссельной заслонки. Проверить легче всего сканером. Но при плавающей неисправности, когда автомобиль едет рывками, нужно проверить сигнал осциллографом. Подключаем сигнальный провод щупа к выходу ДПДЗ и снимаем сигнал открывая дроссель. Не должно быть резких скачков. ![]() ![]() Проверка массы двигателя осциллографомПлохую массу двигателя можно проверить измерительным щупом осциллографа. Минус щупа соединяется с минусовой клеммой АКБ, а сигнальный с двигателем или кузовом. Значительные помехи говорят о плохой массе. ![]() Диагностика катушек зажигания с помощью осциллографаПроверка системы зажигания возможна только по анализу сигнала вторичной или первичной цепи. Самодиагностика двигателя автомобиля способна только косвенно определить дефекты в высоковольтной части. Может выдать ошибку по пропускам зажигания. Коды неисправностей пропусков дают общую картину работы цилиндра. Они могут возникнуть как от неисправной катушки, свечи, высоковольтного провода, форсунки, низкой компрессии, подсоса воздуха. Для точного определения неисправной катушки зажигания нужна проверка осциллографом. Ниже приведен пример типичного сигнала высоковольтного пробоя, по которому можно судить о работоспособности всей высоковольтной системы автомобиля. Любой дефектный элемент: катушка, провод, свеча проявится на этой осциллограмме. Типичные неисправности системы зажигания![]() ![]() ![]() ![]() Проверка индивидуальных катушек зажиганияДля диагностики индивидуальных катушек зажигания очень удобно использовать осциллограф АВТОАС-ЭКСПРЕСС М. Удобство заключается в его компактности и легкости подключения. Достаточно загрузить программу и приложить индуктивный или емкостной датчик прибора к самой катушке. Получаем осциллограмму как показано выше. Диагностика топливной форсунки осциллографомФорсунка бензинового двигателя состоит из запорного клапана, электромагнитный катушки. Соответственно движение этого клапана возможно проверить осциллографом. ![]() ![]() Диагностика форсунок с помощью осциллографа требуется в случае тщательного поиска неисправности. В большинстве случаев достаточно сделать тест Андрея Шульгина на эффективность работы цилиндров. Проверка датчика кислорода с применением осциллографаЛямбда зонд служит для точного дозирования топливо – воздушной смеси и снижения уровня токсичности отработавших газов. Работает по принципу гальванического элемента. Вырабатывает напряжение в зависимости от присутствия свободного кислорода во внутренней и внешней ячейке датчика. Напряжение варьируется от 0,1 – 0,9 вольт, что соответствует бедной и богатой смеси. Проверить работу датчика можно
Первый вариант быстрый и достаточный для оценки общей работы. Второй же вариант диагностики датчика кислорода более точный и позволяет оценить скорость сработки лямбда зонда в режиме обратной связи. ![]() ![]() Скрипт CSS Андрея ШульгинаВот мы и добрались до самой сути диагностики автомобильных двигателей. Для диагностов любой марки это самый информативный скрипт. Он показывает работу форсунок, искры и компрессии за одну проверку. Для проведения этого теста достаточно снять сигнал с датчика положения коленвала и синхронизацию с искры первого цилиндра. Сложность может заключаться в подключении к ДПКВ некоторых марок, но это сглаживается информацией, которую дает скрипт. Порядок записи сигнала применительно к осциллографу USB Autoscope:
Анализ теста Андрея Шульгина
![]()
Таким образом, за 5 минут можно найти причину «троящего» двигателя, не откручивая свечи и не замеряя компрессию. Порядок проведения теста эффективности на осциллографе Мотодок 3Порядок снятия скрипта аналогичный USB Autoscope: Анализ осциллограммы давления в цилиндреДля снятия характеристики газодинамических процессов в цилиндре в комплекте с Мотортестером прилагается датчик давления на 16 атм. Двигатель должен быть прогрет до температуры 80-90 °C Порядок проведения теста:
![]() Важно проанализировать две точки на осциллограмме:
При отклонениях от этих значений, можно говорить о смещении фаз газораспределения. Все вышеприведенные методы работы с мотор тестером можно делать в различной последовательности. Все зависит от конкретного случая. Где-то достаточно провести тест Шульгина или снять характеристику давления в цилиндре. Главное найти неисправность меньшими потерями для владельца автомобиля.
Как проверить лямбда зонд на работоспособность: диагностика мультиметром и тестером![]() «Начинка» современных автомобилей содержит множество датчиков, которые призваны контролировать исправность различных систем и агрегатов. Одним из главных помощников водителя является лямбда-зонд. Но иногда он тоже способен выходить из строя. Не все автолюбители знают, как проверить лямбда-зонд своими руками и серьёзно сэкономить на походах в автосервис. Лямбда зонд: что такое и где находитсяЛямбда зонд (ƛ зонд) – датчик, который замеряет объём кислорода в выхлопных газах и сравнивает со стандартом. Иными словами, это кислородный датчик. Если показатели его не устраивают, он подаёт сигнал в блок управления. Место нахождения зависит от числа датчиков в машине. Так, в ТС, выпущенных до 2000 года, чаще всего стоит один. В более поздних моделях — от 2 датчиков. Первый всегда находится под капотом, второй (если он есть) – под днищем машины. Как работает датчикВыхлопные газы проходят сквозь датчик, а внутрь него поступает чистый воздух из атмосферы. Из-за разной окислительной способности чистого воздуха и отработавших газов появляется разность потенциалов. Эти показания и отправляются в ЭБУ. Внутри датчика спрятаны токопроводящий элемент, электроды, сигнальный контакт и заземление. Вся эта система начинает работать только после прогрева до 300–400 oC. Только при такой температуре твёрдый электролит способен проводить электричество. ![]() Схема работы Виды кислородных датчиковСовременные ТС оснащаются тремя видами датчиков. Циркониевый. Одна из самых популярных моделей, основной элемент в составе — диоксид циркония. Наконечник керамический, начинает работать только при нагреве до 350 oC. Быстро разогревается за счёт вмонтированной нагревательной детали с керамическим изолятором. Такие датчики делятся на 1, 2, 3 и 4 проводные. Титановый. Наконечник устройства изготовлен из диоксида титана. Внешне датчик мало отличается от циркониевого, но работать начинает только при температуре от 700 oC. Из-за сложной конструкции, высокой стоимости и излишней чувствительности к температурным перепадам такие датчики редко используются. Широкополосный. В отличие от предыдущих моделей, у этого датчика имеются две ячейки:
Признаки и причины неисправности ƛ-зондаЛямбда-зонд в процессе эксплуатации авто может выйти из строя. Чаще всего датчик ломается из-за некачественного топлива, попадания топлива или масла внутрь, или неполадок в системе подачи горючего. О неисправности лямбда-зонда могут говорить следующие признаки:
Чтобы вернуть датчику работоспособность, его необходимо вынуть и правильно очистить. Для этого снимают керамическую головку и убирают загрязнения тряпкой с химическим средством. Если и это не помогает, датчик придётся менять. Как проверить лямбда-зонд на работоспособностьСуществует несколько способов проверить лямбда-зонд на исправность. Самый простой и поверхностный — тщательный осмотр устройства, самый сложный — диагностика при помощи специального оборудования. Внешний осмотр датчикаИтак, внешнее изучение кислородного датчика будет состоять из нескольких шагов:
Проверка лямбда-зонда мультиметром (тестером)Потребуется вольтметр, омметр или мультиметр, в котором объединяются оба эти устройства. Если используется последний, его нужно перевести в режим замера сопротивления. Чтобы испытать нагреватель датчика, необходимо:
Показатели могут быть разными, обычно они варьируются в пределах 2–10 Ом. Цифра более 5 Ом говорит об отличной работоспособности датчика. Если сопротивление вообще не выводится на дисплей, это говорит о том, что в нагревателе лямбда-зонда порвался провод и требуется немедленная замена. Прогрев зондаКроме того, мультиметром можно проверить восприимчивость наконечника кислородного датчика. Для этого нужно завести машину и прогреть мотор до 70–80oC. Последующий алгоритм будет таким:
Если напряжения нет вовсе, стоит проверить проводку. Для этого нужно «прощупать» мультиметром все провода, соединяющие реле с выключателем зажигания. Проверка осциллографомДиагностика осциллографом будет более продуктивной, поскольку в этом случае можно зафиксировать промежуток времени, за которое меняется выходное напряжение. Нормальными считаются показатели ниже 120 мСек. Итак, алгоритм проверки будет таким:
В процессе проверки важно засечь, через какое время датчик переходит в рабочий режим, то есть когда на диаграмме появляется динамика. Также анализируется реакция на работу двигателя на 2000–3000 оборотов в минуту. Если после прогрева сигнал стабильно находится только в нижнем или только в верхнем положении, датчик придётся менять. Если сигнал напоминает плавную извилистую линию, как на картинке ниже, датчик сгорел или вышел из строя. Проверка бортовой системойЕсли в машине имеется ЭБУ, поиск неполадок можно существенно облегчить. Стоит обратить внимание на индикатор «Check Engine», который нередко предупреждает о проблемах с лямбда-зондом. Чтобы уточнить причину сигнала, достаточно подключить к бортовому компьютеру автосканер. К кислородному датчику будут относиться ошибки:
Видео: как проверить работоспособность лямбда-зондаПроверять исправность лямбда-зонда нужно регулярно, особенно если пробег машины перевалил за 50 000 км. Очень часто признаки выхода датчика из строя схожи с более серьёзными поломками. Вместо того, чтобы выискивать проблему в двигателе или электронике, порой достаточно поверхностно осмотреть лямбда-датчик. Оцените статью: Поделитесь с друзьями!Активный пассивный X1 X10. . »Электроника Примечания- обзор или учебное пособие по различным типам пробников осциллографов, которые доступны для использования с осциллографами. Осциллограф Учебное пособие включает: Датчики осциллографа включают: Пробники осциллографа Компенсация датчика Технические характеристики пробника осциллографа Осциллографы широко используются для проверки и ремонта электронного оборудования всех типов.Однако необходимо иметь способ подключения входа осциллографа к точке на тестируемом оборудовании, которая требует контроля. Для подключения осциллографа к контролируемой точке необходимо использовать экранированный кабель для предотвращения сбора нежелательных сигналов, и в дополнение к этому на входах большинства осциллографов используются коаксиальные разъемы BNC. Хотя можно использовать коаксиальный кабель нестандартной длины с разъемом BNC на одном конце и открытыми проводами с зажимами типа «крокодил» / «крокодил» на другом, это не идеально, и специальные пробники для осциллографов обеспечивают гораздо более удовлетворительное решение.
Щупы для осциллографовПробники осциллографаобычно содержат разъем BNC, коаксиальный кабель (обычно около метра в длину) и то, что можно назвать самим пробником. Он состоит из механического зажима, позволяющего прикрепить пробник к соответствующей контрольной точке, и зажима заземления, который должен быть прикреплен к соответствующей точке заземления на тестируемой цепи. Будьте осторожны при использовании щупов осциллографа, так как они могут сломаться.Несмотря на то, что они прочно изготовлены, любая лаборатория электроники будет рассматривать пробники осциллографов почти как «жизнеспособные» предметы, которые можно утилизировать через некоторое время, если они сломаются. К сожалению, тот факт, что они прикреплены к кабелям оборудования, создает огромную нагрузку на механическое устройство зажимов. В конечном итоге именно эта часть ломается. Наконечник пробника осциллографаПробники осциллографа X1 и X10Существует два основных типа пассивных пробников для измерения напряжения. Обычно они обозначаются X1 и X10, хотя иногда встречаются 1X и 10X.Обозначение относится к коэффициенту, на который импеданс осциллографа умножается на щуп. Пробники X1 подходят для многих низкочастотных приложений. Они имеют такое же входное сопротивление, что и осциллограф, которое обычно составляет 1 МОм. Однако для приложений, где требуется более высокая точность и когда частоты начинают расти, необходимы другие испытательные пробники. Для достижения большей точности требуются более высокие уровни импеданса. Для этого в конец пробника, который подключается к проверяемой цепи, встроены аттенюаторы.Самый распространенный тип пробника со встроенным аттенюатором дает ослабление в десять раз, и он известен как пробник осциллографа X10. Затухание позволяет увеличить импеданс тестируемой цепи в десять раз, что позволяет проводить более точные измерения. Поскольку пробник X10 ослабляет сигнал в десять раз, сигнал, поступающий в сам осциллограф, будет уменьшаться. Это необходимо учитывать. Некоторые осциллографы автоматически настраивают шкалы в соответствии с имеющимся пробником, хотя не все могут это сделать.Перед чтением стоит проверить. Некоторые пробники осциллографов могут переключаться между X1 и X10.Пробник осциллографа 10X использует последовательный резистор (9 МОм) для обеспечения ослабления 10: 1, когда он используется с входным импедансом 1 МОм самого осциллографа. Импеданс 1 МОм - это стандартный импеданс, используемый для входов осциллографа, поэтому он позволяет заменять пробники осциллографа между осциллографами разных производителей. Схема пробника осциллографаПоказанная схема пробника осциллографа является типичной, которую можно увидеть - другие варианты с конденсатором переменной компенсации на кончике также распространены. В дополнение к зондам X1 и X10 также доступны зонды X100. Эти пробники осциллографов обычно используются там, где требуются очень низкие уровни нагрузки схемы и где присутствуют высокие частоты. Сложность использования заключается в том, что сигнал ослабляется в 100 раз. X10 компенсация пробника осциллографаПробник осциллографа X10 фактически является аттенюатором, что позволяет ему значительно снизить нагрузку на тестируемую цепь. Это достигается за счет уменьшения резистивной и емкостной нагрузки в цепи.Он также имеет гораздо более широкую полосу пропускания, чем традиционный пробник X1. Пробник осциллографа x10 обеспечивает лучшую высокочастотную характеристику, чем обычный пробник X1, по ряду причин. Это достигается за счет уменьшения резистивной и емкостной нагрузки на пробнике X10, который часто можно регулировать или компенсировать для улучшения частотной характеристики. Типовой пробник осциллографаДля многих пробников осциллографа существует одна регулировка, обеспечивающая компенсацию пробника, хотя на некоторых пробниках их может быть две: один для компенсации НЧ, а другой - для компенсации ВЧ. Датчики, у которых есть только одна регулировка: регулируется компенсация НЧ, иногда компенсация ВЧ может быть отрегулирована на заводе. Для достижения правильной компенсации зонд подключается к генератору прямоугольных импульсов в осциллографе, а подстроечный резистор регулируется для требуемого отклика - прямоугольной волны. Формы сигналов регулировки компенсации для пробника осциллографа X10.Как видно, регулировка достаточно очевидна, ее можно легко и быстро выполнить.Это следует делать каждый раз, когда зонд перемещается с одного входа на другой или с одного осциллографа на другой. Не помешает время от времени его проверять, даже если он остается на том же входе. Как и в большинстве лабораторий, вещи берут взаймы, могут возвращать другой зонд и т. Д. . Предупреждение: многие пробники осциллографов включают переключатель X1 / X10. Это удобно, но нужно понимать, что в положении X1 резистивная и емкостная нагрузка на схему значительно возрастает.Также следует помнить, что компенсационный конденсатор не действует при использовании в этом положении. В качестве примера представленных уровней нагрузки, типичный пробник может иметь сопротивление нагрузки 10 МОм вместе с емкостью нагрузки 15 пФ для цепи в положении X10. Для положения X1 зонд может иметь емкость, возможно, 50 пФ плюс входная емкость осциллографа. Это может быть от 70 до 80 пФ. Наконечник пробника осциллографа Другие типы пробникаПомимо стандартных пробников напряжения 1X и 10X, доступен ряд других типов пробников.
СводкаПробники осциллографаявляются важным дополнением к любому осциллографу. В большинстве случаев можно использовать пассивные зонды 10X, но необходимо учитывать другие типы тестовых зондов в зависимости от предполагаемых приложений. Другие темы тестирования: % PDF-1.4 % 2477 0 объект > endobj xref 2477 44 0000000016 00000 н. 0000003090 00000 н. 0000003272 00000 н. 0000003914 00000 н. 0000004547 00000 н. 0000004726 00000 н. 0000004907 00000 н. 0000005022 00000 н. 0000005281 00000 п. 0000005921 00000 н. 0000009450 00000 н. 0000009994 00000 н. 0000010260 00000 п. 0000010838 00000 п. 0000010955 00000 п. 0000011080 00000 п. 0000014123 00000 п. 0000017403 00000 п. 0000019978 00000 п. 0000023091 00000 п. 0000023653 00000 п. 0000023831 00000 п. 0000024010 00000 п. 0000024267 00000 п. 0000024880 00000 п. 0000028426 00000 п. 0000028605 00000 п. 0000032452 00000 п. 0000032760 00000 п. 0000036497 00000 п. 0000048998 00000 н. 0000061228 00000 п. 0000072426 00000 п. 0000072546 00000 п. 0000072661 00000 п. 0000072740 00000 п. 0000073018 00000 п. 0000073097 00000 п. 0000073376 00000 п. 0000073455 00000 п. 0000073733 00000 п. 0000210767 00000 н. 0000002870 00000 н. 0000001204 00000 н. трейлер ] / Назад 6207149 / XRefStm 2870 >> startxref 0 %% EOF 2520 0 объект > поток h VYPWLb0, vp`f ׁ JPH `舨> \ .Как пользоваться осциллографомВведениеВы когда-нибудь обнаруживали, что при поиске неисправностей в цепи вам требуется больше информации, чем может предоставить простой мультиметр? Если вам нужно получить информацию, такую как частота, шум, амплитуда или любые другие характеристики, которые могут измениться со временем, вам понадобится осциллограф! ![]() - важный инструмент в лаборатории любого инженера-электрика. Они позволяют видеть электрические сигналы , поскольку они меняются во времени, что может иметь решающее значение для диагностики, почему ваша схема таймера 555 не мигает правильно или почему ваш генератор шума не достигает максимальных уровней раздражения. HAMlab - 160-6 10 ВтОсталось всего 3! WRL-15001HAMlab - это полнофункциональный SDR-трансивер с диапазоном 160-10 м и выходной мощностью 10 Вт, построенный на платформе STEMlab… рассматривается в этом учебном пособииЦель данного руководства - познакомить с концепциями, терминологией и системами управления осциллографов.Он разбит на следующие разделы:
Мы будем использовать Gratten GA1102CAL - удобный цифровой осциллограф среднего уровня - в качестве основы для обсуждения осциллографа. Другие o-области могут выглядеть иначе, но все они должны иметь одинаковый набор механизмов управления и интерфейса. Рекомендуемая литератураПрежде чем продолжить изучение этого руководства, вы должны быть знакомы с приведенными ниже концепциями. Ознакомьтесь с руководством, если хотите узнать больше! Видео
Основы O-ScopesОсновное назначение осциллографа - графическое изображение электрического сигнала, изменяющегося во времени .Большинство осциллографов создают двумерный график с временем по оси x и напряжением по оси y . ![]() Пример дисплея осциллографа. Сигнал (в данном случае желтая синусоида) отображается на горизонтальной оси времени и вертикальной оси напряжения. Элементы управления, окружающие экран осциллографа, позволяют настраивать масштаб графика как по вертикали, так и по горизонтали, что позволяет увеличивать и уменьшать масштаб сигнала.Есть также элементы управления для установки триггера на прицеле, который помогает сфокусироваться и стабилизировать изображение. Что могут измерить прицелы?В дополнение к этим основным функциям многие осциллографы имеют инструменты измерения, которые помогают быстро определять частоту, амплитуду и другие характеристики формы сигнала. Как правило, осциллограф может измерять характеристики как по времени, так и по напряжению:
Когда использовать O-Scopeo-scope полезен в различных ситуациях поиска и устранения неисправностей, в том числе:
Осциллограф LexiconНаучиться пользоваться осциллографом - значит познакомиться с целым словарем терминов.На этой странице мы познакомим вас с некоторыми важными модными словечками o-scope, с которыми вы должны знать, прежде чем включать его. Основные характеристики осциллографаНекоторые прицелы лучше других. Эти характеристики помогают определить, насколько хорошо вы можете ожидать от прицела:
Используя GA1102CAL в качестве примера, вот характеристики, которые можно ожидать от прицела среднего класса:
Понимая эти характеристики, вы сможете выбрать осциллограф, который лучше всего соответствует вашим потребностям.Но вам все равно нужно знать, как им пользоваться ... на следующей странице! Анатомия O-ScopeХотя никакие осциллографы не создаются абсолютно равными, все они должны иметь некоторые общие черты, которые заставляют их работать одинаково. На этой странице мы обсудим некоторые из наиболее распространенных систем осциллографа: дисплей, горизонтальную, вертикальную, триггер и входы. ![]() ДисплейОсциллограф бесполезен, если он не может отображать информацию, которую вы пытаетесь проверить, что делает дисплей одним из наиболее важных разделов осциллографа. ![]() Каждый дисплей осциллографа должен быть пересечен горизонтальными и вертикальными линиями, называемыми делениями . Масштаб этих делений изменен с помощью горизонтальной и вертикальной систем. Вертикальная система измеряется в «вольтах на деление», а горизонтальная - в «секундах на деление». Как правило, прицелы имеют около 8-10 делений по вертикали (напряжение) и 10-14 делений по горизонтали (секунд). Старые прицелы (особенно аналоговые) обычно имеют простой монохромный дисплей, хотя интенсивность волны может варьироваться.Более современные осциллографы оснащены многоцветными ЖК-экранами, которые очень помогают отображать более одной формы сигнала за раз. Многие дисплеи осциллографа расположены рядом с набором из пяти кнопок - сбоку или под дисплеем. Эти кнопки могут использоваться для навигации по меню и управления настройками осциллографа. Вертикальная системаВертикальная секция осциллографа управляет шкалой напряжения на дисплее. В этом разделе традиционно есть две ручки, которые позволяют индивидуально регулировать вертикальное положение и вольт / дел. ![]() Более критичная ручка вольт на деление позволяет вам установить вертикальный масштаб на экране. Вращение ручки по часовой стрелке уменьшает масштаб, а против часовой стрелки - увеличивает. Меньший масштаб - меньшее количество вольт на деление экрана - означает, что вы в большей степени увеличиваете масштаб сигнала. Дисплей GA1102, например, имеет 8 вертикальных делений, а ручка вольт / деление может выбирать шкалу от 2 мВ / дел до 5 В / дел. Таким образом, при полном увеличении до 2 мВ / дел на дисплее может отображаться осциллограмма 16 мВ сверху вниз.Полностью уменьшенный, осциллограф может отображать сигнал в диапазоне более 40 В. (Зонд, как мы обсудим ниже, может еще больше увеличить этот диапазон.) Положение Ручка управляет вертикальным смещением формы сигнала на экране. Поверните ручку по часовой стрелке, и волна будет двигаться вниз, против часовой стрелки - вверх по дисплею. Вы можете использовать ручку положения, чтобы сместить часть сигнала за пределы экрана. ![]() Используя одновременно ручки положения и вольт / деления, вы можете увеличить только крошечную часть сигнала, которая вас больше всего волнует.Если у вас есть прямоугольная волна 5 В, но вы заботитесь только о том, насколько сильно она звенит по краям, вы можете увеличить нарастающий фронт, используя обе ручки. Горизонтальная системаГоризонтальная часть осциллографа управляет шкалой времени на экране. Как и в вертикальной системе, горизонтальный элемент управления дает вам две ручки: положение и секунды / дел. ![]() Ручка секунд на деление (с / дел) вращается для увеличения или уменьшения горизонтального масштаба.Если вы повернете ручку s / div по часовой стрелке, количество секунд, которое представляет каждое деление, уменьшится - вы «увеличите масштаб» шкалы времени. Поверните против часовой стрелки, чтобы увеличить шкалу времени и отобразить на экране большее количество времени. Если снова использовать GA1102 в качестве примера, дисплей имеет 14 горизонтальных делений и может отображать от 2 нс до 50 с на деление. Таким образом, при полном увеличении по горизонтали осциллограф может отображать 28 нс формы волны, а при увеличении масштаба он может отображать сигнал, когда он изменяется в течение 700 секунд. Положение Ручка позволяет перемещать форму сигнала вправо или влево от дисплея, регулируя горизонтальное смещение . Используя горизонтальную систему, вы можете настроить , сколько периодов осциллограммы вы хотите видеть. Вы можете уменьшить масштаб и показать несколько пиков и впадин сигнала: ![]() Или вы можете увеличить масштаб и использовать ручку положения, чтобы показать только крошечную часть волны: ![]() Система запускаРаздел триггера посвящен стабилизации и фокусировке осциллографа.Триггер сообщает осциллографу, какие части сигнала «запускать» и начинать измерение. Если ваша форма волны периодическая , триггером можно управлять, чтобы дисплей оставался статичным, и устойчивым. Плохо сработавшая волна будет производить такие широкие волны, как это: ![]() Секция триггера осциллографа обычно состоит из ручки уровня и набора кнопок для выбора источника и типа триггера. Ручка уровня может быть повернута для установки триггера на определенную точку напряжения. ![]() Ряд кнопок и экранных меню составляют остальную часть триггерной системы. Их основное назначение - выбор источника и режима запуска. Существует множество типов триггеров , которые определяют способ активации триггера:
Обычно вы также можете выбрать режим запуска , который, по сути, сообщает осциллографу, насколько сильно вы относитесь к своему запуску. В режиме автоматического запуска осциллограф может попытаться нарисовать сигнал, даже если он не запускается. Нормальный режим будет рисовать вашу волну, только если видит указанный триггер. И single mode ищет указанный вами триггер, когда он его видит, он рисует вашу волну, а затем останавливается. ЗондыОсциллограф хорош, только если вы действительно можете подключить его к сигналу, а для этого вам нужны пробники. Пробники - это устройства с одним входом, которые направляют сигнал от вашей схемы к осциллографу. У них есть острый наконечник , который исследует точку на вашей цепи. Наконечник также может быть оснащен крючками, пинцетом или зажимами, чтобы упростить фиксацию на цепи. Каждый пробник также включает в себя заземляющий зажим , который следует надежно прикрепить к общей точке заземления на тестируемой цепи. ![]() В то время как пробники могут показаться простыми устройствами, которые просто фиксируются на вашей схеме и передают сигнал в осциллограф, на самом деле многое нужно сделать в конструкции и выборе пробника. Оптимально, зонд должен быть невидимым - он не должен влиять на ваш тестируемый сигнал. К сожалению, все длинные провода обладают собственной индуктивностью, емкостью и сопротивлением, поэтому, несмотря ни на что, они будут влиять на показания осциллографа (особенно на высоких частотах). Существует множество типов пробников, наиболее распространенным из которых является пассивный пробник , входящий в состав большинства прицелов.Большинство «штатных» пассивных пробников - это аттенуированных . Ослабляющие пробники имеют большое сопротивление, намеренно встроенное и шунтируемое небольшим конденсатором, что помогает свести к минимуму влияние длинного кабеля на нагрузку вашей цепи. Этот ослабленный пробник, соединенный последовательно с входным сопротивлением осциллографа , будет создавать делитель напряжения между сигналом и входом осциллографа. ![]() Большинство пробников имеют резистор 9 МОм для ослабления, который в сочетании со стандартным входным сопротивлением 1 МОм на осциллографе создает делитель напряжения 1/10.Эти зонды обычно называются 10X ослабленными зондами . Многие пробники включают переключатель для выбора между 10X и 1X (без затухания). ![]() Аттенуированные пробники отлично подходят для повышения точности на высоких частотах, но они также уменьшат амплитуду вашего сигнала. Если вы пытаетесь измерить сигнал очень низкого напряжения, возможно, вам придется использовать пробник 1X. Вам также может потребоваться выбрать настройку на вашем прицеле, чтобы сообщить ему, что вы используете ослабленный зонд, хотя многие осциллографы могут это обнаружить автоматически. Помимо пассивного ослабленного пробника, существует множество других пробников. Активные пробники - это пробники с питанием (для них требуется отдельный источник питания), которые могут усилить ваш сигнал или даже предварительно обработать его, прежде чем он попадет в ваш осциллограф. Хотя большинство пробников предназначены для измерения напряжения, существуют пробники, предназначенные для измерения переменного или постоянного тока. Токовые пробники уникальны, потому что они часто зажимают провод, фактически не контактируя с цепью. Использование осциллографаБесконечное разнообразие сигналов означает, что вы никогда не сможете использовать один и тот же осциллограф дважды. Но есть несколько шагов, на выполнение которых вы можете рассчитывать практически каждый раз, когда тестируете схему. На этой странице мы покажем пример сигнала и шаги, необходимые для его измерения. Выбор и настройка датчикаВо-первых, вам нужно выбрать зонд. Для большинства сигналов простой пассивный пробник , входящий в комплект поставки осциллографа, будет работать идеально. Затем, прежде чем подключать его к осциллографу, установите ослабление на пробнике. 10X - наиболее распространенный коэффициент затухания - обычно является наиболее всесторонним выбором. Однако если вы пытаетесь измерить сигнал очень низкого напряжения, вам может потребоваться 1X. Подключите зонд и включите осциллографПодключите пробник к первому каналу осциллографа и включите его. Наберитесь терпения, некоторые прицелы загружаются так же долго, как и старый компьютер. При загрузке осциллографа вы должны увидеть деления, масштаб и зашумленную ровную линию формы сигнала. ![]() На экране также должны отображаться ранее установленные значения времени и вольт на деление. Игнорируя пока эти шкалы, внесите эти настройки, чтобы поместить ваш прицел в стандартную установку :
Для получения помощи по настройке этих параметров обратитесь к руководству пользователя осциллографа (например, к руководству GA1102CAL). Проверка датчикаДавайте подключим этот канал к значимому сигналу. Большинство осциллографов будут иметь встроенный генератор частоты , который излучает надежную волну заданной частоты - на GA1102CAL в правом нижнем углу передней панели имеется прямоугольный сигнал с частотой 1 кГц.Выход генератора частоты имеет два отдельных проводника - один для сигнала и один для заземления. Подключите заземляющий зажим пробника к земле, а наконечник пробника к выходу сигнала. ![]() Как только вы подключите обе части зонда, вы должны увидеть, как сигнал начинает танцевать вокруг вашего экрана. Попробуйте поиграть с помощью системных регуляторов горизонтального и вертикального , чтобы перемещать сигнал по экрану. Поворот регуляторов шкалы по часовой стрелке «увеличивает» осциллограмму, а против часовой стрелки - уменьшает.Вы также можете использовать ручку положения для дальнейшего определения вашего сигнала. Если ваша волна все еще нестабильна, попробуйте повернуть ручку положения триггера на . Убедитесь, что триггер не выше самого высокого пика сигнала . По умолчанию тип триггера должен быть установлен по фронту, что обычно является хорошим выбором для таких прямоугольных волн. Попробуйте повозиться с этими ручками, чтобы отобразить на экране один период вашей волны. ![]() Или попробуйте уменьшить масштаб временной шкалы, чтобы отобразить десятки квадратов. Компенсация ослабленного пробникаЕсли ваш датчик настроен на 10X, и у вас нет идеально прямоугольной формы волны, как показано выше, вам может потребоваться компенсировать ваш датчик . Большинство пробников имеют утопленную головку винта, которую можно поворачивать, чтобы отрегулировать шунтирующую емкость пробника. ![]() Попробуйте использовать небольшую отвертку, чтобы повернуть триммер, и посмотрите, что происходит с осциллограммой. ![]() Отрегулируйте подстроечный колпачок на рукоятке зонда так, чтобы получился прямоугольный сигнал с прямым краем и .Компенсация необходима только в том случае, если ваш зонд ослаблен (например, 10X), и в этом случае это критично (особенно если вы не знаете, кто использовал ваш прицел последним!). Наконечники для пробников, запуска и масштабированияПосле того, как вы скомпенсировали зонд, пришло время измерить реальный сигнал! Иди найди источник сигнала (генератор частоты ?, Террор-Мин?) И возвращайся. Первый ключ к зондированию сигнала - найти прочную и надежную точку заземления . Прикрепите зажим заземления к известному заземлению, иногда вам, возможно, придется использовать небольшой провод для промежуточного звена между зажимом заземления и точкой заземления вашей схемы.Затем подключите наконечник пробника к тестируемому сигналу. Наконечники пробников существуют в различных форм-факторах - подпружиненный зажим, острие, крючки и т. Д. - постарайтесь найти тот, который не требует от вас постоянного удерживания его на месте. ⚡ Внимание! Будьте осторожны при установке заземляющего зажима при проверке неизолированной цепи (например, без батарейного питания или при использовании изолированного источника питания). При проверке цепи, которая заземлена на сетевую землю, обязательно подключите заземляющий зажим к той стороне цепи , которая подключена к заземлению сети .Это почти всегда отрицательная сторона / земля цепи, но иногда может быть и другая точка. Если точка, к которой подключен заземляющий зажим, имеет разность потенциалов, вы создадите прямое короткое замыкание и можете повредить вашу схему, осциллограф и, возможно, вас самих! Для дополнительной безопасности при проверке цепей, подключенных к сети, подключите его к источнику питания через изолирующий трансформатор.![]() Как только ваш сигнал появится на экране, вы можете начать с настройки горизонтальной и вертикальной шкал, по крайней мере, так, чтобы приблизиться к вашему сигналу.Если вы исследуете прямоугольную волну 5 В на 1 кГц, вам, вероятно, понадобится значение вольт / дел где-то около 0,5-1 В и установите секунды / деление примерно на 100 мкс (14 делений покажут около полутора периодов). Если часть вашей волны поднимается или опускается на экране, вы можете отрегулировать вертикальное положение , чтобы переместить его вверх или вниз. Если ваш сигнал является чисто постоянным током, вы можете настроить уровень 0 В в нижней части дисплея. После того, как вы настроите весы, возможно, потребуется выполнить запуск формы волны. Запуск по фронту - когда осциллограф пытается начать сканирование, когда обнаруживает повышение (или падение) напряжения выше заданного значения - это самый простой в использовании тип. Используя триггер по фронту, попробуйте установить уровень триггера на точку на вашей форме сигнала, которая видит только нарастающий фронт один раз за период . Теперь просто масштабируйте , позиционируйте, запускайте и повторяйте , пока не получите именно то, что вам нужно. Отмерь дважды, отрежь один разПри наличии сигнала с определенным диапазоном, запуском и масштабированием пора измерять переходные процессы, периоды и другие свойства формы сигнала.У некоторых осциллографов больше инструментов измерения, чем у других, но все они, по крайней мере, будут иметь деления, по которым вы сможете по крайней мере оценить амплитуду и частоту. Многие осциллографы поддерживают различные инструменты автоматического измерения, они могут даже постоянно отображать самую важную информацию, например частоту. Чтобы получить максимальную отдачу от своей области действия, вы захотите изучить все функции измерения , которые он поддерживает. Большинство осциллографов автоматически рассчитают частоту, амплитуду, рабочий цикл, среднее напряжение и ряд других волновых характеристик. ![]() Используя инструменты измерения осциллографа, найдите V PP , V Max , частоту, период и рабочий цикл. Третий измерительный инструмент, который предоставляют многие прицелы, - это курсоров . Курсоры - это подвижные маркеры на экране, которые можно размещать на оси времени или напряжения. Курсоры обычно бывают парами, поэтому вы можете измерить разницу между ними. ![]() Измерение сигнала прямоугольной волны курсорами. После того, как вы измерили искомую величину, вы можете приступить к корректировке вашей схемы и еще раз измерить! Некоторые осциллографы также поддерживают с сохранением , с печатью или с сохранением формы волны, поэтому вы можете вспомнить ее и вспомнить те старые добрые времена, когда вы оценивали этот сигнал. Чтобы узнать больше о возможностях вашего прицела, обратитесь к его руководству пользователя! . Как осциллограф может измерить ток?Большинство осциллографов напрямую измеряют только напряжение, а не ток, однако есть несколько способов измерить ток с помощью осциллографа: 1. Измерьте падение напряжения на шунтирующем резисторе - в конструкции некоторых источников питания могут быть встроены шунтирующие резисторы для обратной связи. Один из методов - измерить падение дифференциального напряжения на таком резисторе. Обычно это резисторы небольшого номинала, часто менее 1 Ом. 2. Измерение тока с помощью токового пробника - При использовании в сочетании с возможностями измерения напряжения осциллографа, токовые пробники могут обеспечивать широкий спектр важных измерений мощности, таких как мгновенная мощность, средняя мощность и фаза. Чтобы ваши текущие измерения были максимально точными, необходимо выбрать и правильно применить наиболее подходящий метод. Каждый из двух вышеперечисленных методов имеет свои преимущества и недостатки, которые мы рассмотрим ниже: Измерение тока как падения напряжения на шунтирующем резистореЕсли в блок питания встроен резистор считывания тока («шунтирующий» резистор), это наиболее удобный подход.Измерение падения напряжения на измерительном резисторе с помощью активного дифференциального пробника обеспечит хорошие результаты, если синфазный сигнал находится в пределах указанного рабочего диапазона пробника, а падение напряжения достаточно велико. Однако использование дифференциального пробника для сигналов низкого уровня требует некоторого внимания к снижению шума в системе измерения.
Если вы добавляете в схему резистор считывания, постарайтесь добавить его как можно ближе к земле, чтобы минимизировать синфазные сигналы на резисторе, которые система измерения должна отклонять.И, в отличие от высокопроизводительных токовых пробников, характеристика подавления синфазного сигнала при измерениях дифференциального напряжения имеет тенденцию к падению с увеличением частоты, что снижает точность измерений высокочастотного тока с помощью измерительных резисторов. Измерение тока с помощью токоизмерительного щупа Ток, протекающий через проводник, вызывает формирование поля электромагнитного потока вокруг проводника Это позволяет просматривать и анализировать формы сигналов тока с помощью осциллографа. При использовании в Существует два основных типа пробников тока для осциллографов:
Этот переменный ток заставляет магнитное поле нарастать и коллапсировать в соответствии с амплитудой и направлением тока. Когда чувствительная катушка помещается в это магнитное поле, изменяющееся магнитное поле индуцирует пропорциональное напряжение на катушке посредством простого действия трансформатора. Этот связанный с током сигнал напряжения затем преобразуется и может отображаться на осциллографе в виде масштабированного по току сигнала. Простейшие пробники переменного тока представляют собой пассивные устройства, которые представляют собой просто катушку, которая , основанные на технологии катушки Роговского, являются альтернативой токовым пробникам со сплошным и разъемным сердечником Для многих приложений преобразования энергии пробник переменного / постоянного тока с разъемным сердечником является наиболее универсальным, точным и простым в использовании решением. В датчиках переменного / постоянного тока используется трансформатор для измерения переменного тока и устройство на эффекте Холла для измерения постоянного тока. Поскольку они включают в себя активную электронику для поддержки датчика Холла, для работы датчиков переменного / постоянного тока требуется источник питания. Этот источник питания может быть отдельным источником питания или может быть интегрирован в некоторые осциллографы. Видеообзор того, как измерить ток осциллографом:
Ознакомьтесь с продуктами Tektronix на RS:. |