Распределенный впрыск топлива что это


Система распределенного впрыска топлива: принцип действия, достоинства и недостатки

Система распределенного впрыска – это современная и наиболее прогрессивная многоточечная система топливной подачи, применяемая на бензиновых двигателях. Особенностью подобной системы является то, что каждый цилиндр ДВС оснащен собственной форсункой, через которую происходит дозированная подача топлива.

Двигатели, оснащенные системой распределенной подачей топлива, имеют более высокие показатели экономичного расхода ТС и низкий уровень токсичности отработанных газов.

Виды систем распределенного впрыска

Современные системы распределенного типа подачи топлива разделены на несколько видов:

  • По принципу работы – системы импульсной и непрерывной подачи ТС;
  • По способу управления – системы на механическом и электронном типе управления;
  • По времени открытия топливных форсунок – системы с попарно-параллельным впрыском (при подаче топлива попарно), одновременным впрыском (при одновременной подаче топлива во все форсунки), фазированным впрыском (при индивидуальной подаче топлива для каждой форсунки), прямым впрыском (подача топлива осуществляется в камеру сгорания цилиндра, минуя впускной коллектор).

Наиболее распространенными системами распределенной подачи ТС являются системы KE-Jetronic, K-Jetronic и L-Jetronic, разработанные компанией Bosch.

Система K-Jetronic относится к механическим топливным системам с непрерывной подачей ТС.

Система типа KE-Jetronic одна из разновидностей механической топливной системы непрерывного типа с электронным способом управления.

Система L-Jetronic представляет собой систему импульсной подачи топлива с электронным типом управления.

Система распределенной подачи ТС состоит из следующих подсистем и компонентов:

  • систем подачи и очистки топлива и воздуха;
  • системы сжигания бензиновых испарений;
  • системы выпуска и сжигания отработанных газов;
  • электронного блока управления с входными датчиками

Как работает система распределенной подачи ТС

Работа основных элементов системы – форсунок напрямую зависит от центра управления – управляющего блока, состоящего из бортового компьютера. Основной функцией управляющего блока является прием электрических сигналов, поступающих от входных датчиков, с последующей обработкой и преобразованием в управляющие сигналы, которые передаются на электромагнитные клапаны топливных форсунок и механизмы исполнения.

Помимо основных функций, блок управления выполняет и дополнительные задачи – проводит своевременную диагностику топливной системы на предмет выявления любых неполадок или поломок в ее работе.

При обнаружении неполадок блок управления сообщает о них водителю через контрольные лампы на приборной панели - Check engine, Check. Информация о более сложных поломках заносится в блок памяти для дальнейшего использования при повторной диагностике.

Расчет нужного количества топлива, происходит на основании данных полученных от температурных датчиков (температуры двигателя и поступающего воздуха), расхода воздуха, подсчета скорости вращения коленвала, угла открытия заслонки и т.д.

Произведя необходимые расчеты на основании полученных данных, бортовой компьютер посылает сигналы в виде электрических импульсов на форсунки для их открытия. Принимая сигналы, форсунки открывают клапаны, через которые топливо под высоким давлением поступает в топливный коллектор.

Преимущества и недостатки системы распределенной подачи ТС

Подобный тип системы топливной подачи имеет некоторые преимущества и недостатки. Наиболее значимые из них мы отдельно выделим.

Преимущества системы:

  • долговечность и надежность;
  • высокая экономичность использования топлива;
  • низкая токсичность отработанных газов бензиновых ДВС;
  • низкая вероятность появления сбоев в работе системы в условиях экстремального вождения (например, при преодолении крутых спусков и подъемов, при езде в дождь или гололед).

Недостатки системы:

  • сложная и дорогостоящая конструкция, оснащенная чувствительной системой электронного управления;
  • высокая стоимость ремонта и замены основных электронных элементов системы;
  • особенность конструкции требует проведения ремонтных и профилактических работ только высококвалифицированными специалистами.

Распределенный и послойный впрыск топлива

На чтение 4 мин. Просмотров 230

Наиболее распространенной моделью этой системы является послойный впрыск топлива, который позволяет подавать топливную жидкость отдельно для каждого цилиндра. Эта подача осуществляется с помощью специальных распределительных форсунок.

Специальная система, подающая в цилиндры двигателя топливную жидкость, называется распределенный впрыск топлива. Компонент устанавливается на все автомобили без исключения, она может носить следующий характер:

  • Механический;
  • Распределенный;
  • Непосредственный;
  • Моновпрыск.

Наиболее распространенной моделью этой системы является послойный впрыск топлива, который позволяет подавать топливную жидкость отдельно для каждого цилиндра. Эта подача осуществляется с помощью специальных распределительных форсунок.

Система распределенного впрыска топлива

Что значит последовательность впрыска

Последовательность или фазы впрыска топлива обусловлена следующими показателями:

  • За один отработанный цикл двигателя каждая специальная форсунка отрабатывает одну фазу впрыска;
  • Время этой фазы для каждой модели автомобиля может быть разным, но при этом количество топлива в большинстве случаев одинакова.

Распределенный впрыск топлива внедряется не на каждый автомобиль, поскольку он отличается тем, что подходит только для инжекторных автомобилей. Автовладельцы, которые сталкиваются с этой системой, отмечают, что она позволяет достичь до 15 % экономии топлива.

Как работает система

Чтобы было понятно, как работает комплекс впрыска, следует рассмотреть ее подробно. Если сказать коротко, то система работает следующим образом:

  • Для двигателя подается смесь из топлива и воздуха;
  • Подача воздуха контролируется с помощью дроссельной заслонкой;
  • Прежде чем попасть в двигатель воздух распределяется на четыре потока;
  • Потом потоки накапливаются в специальном ресивере;
  • Кроме накопления ресивер применяется также для измерения количества воздуха;

Ресивер на двигатель устанавливается такого размера, чтобы предупредить воздушное голодание цилиндров, то есть, чтобы система обладала, все время достаточным количеством воздуха для работы. Для того чтобы впрыск воздушно-топливной осуществлялся качественно и бесперебойно на компонент установлены специальные форсунки, они располагаются поблизости от впускных клапанов.

Система распределенного впрыска топлива

Из каких механизмов состоит система

Следует перечислить, из каких исполнительных механизмов состоит комплекс впрыска топлива инжекторного автомобиля:

Бензонасос работает на нагнетание топливной смеси в специальную рампу. Чтобы давление в этой рампе было все время на определенном уровне на ней установлен механический регулятор давления. Иногда бензонасос и регулятор совмещены.

Форсунки специальные клапаны с регулируемой производительностью, которые имеют электромагнитные прецензионный характер.

Зажигательный модуль специальное устройство, предназначенное для регуляции искрообразования. Включает в себя два независимо работающих канала, которые направлены на поджиг смеси, отдельно в 1 и 4, а также во 2 и 3 цилиндрах.

Клапан предохранения – направлен на защиту всех элементов системы от впрыска повышенного давления. Давление впрыска повышается от температурного расширения топлива, сам клапан устанавливается на рампе.

Регулирование холостого хода эта часть системы обусловлено специальным регулятором, который поддерживает заданные обороты. Сам регулятор представляет собой двигатель шагового типа, он регулирует канал воздуха обводного типа в дроссельную заслонку. Это необходимо для того чтобы двигатель постоянно получал необходимое количество воздуха.

Вентилятор системного охлаждения имеет управление от электрической составляющей автомобиля и работает в зависимости от сигналов ДТОЖ.

Датчик топливного расхода подает постоянный сигнал на маршрутный компьютер или на панель управления и сообщает водителю необходимые показатели. Надо отметить, что этот датчик может работать с погрешностями, так как данный высчитываются по приблизительным показателям.

Адсорбер еще один компонент замкнутой цепи, которая регулирует пары бензина. Чаще всего такой элемент устанавливается на зарубежные автомобиля.

Схема распределенного впрыска топлива

Управление системой

Система впрыска регулируется электронным блоком управления, которые представляет собой специальный компьютер. В нем происходить определенный алгоритм обработки данных, которые показывают датчики системы. Для качественной работы этого блока необходимы следующие показатели:

  • Качественно и исправно работающие датчики;
  • Отрегулированная подача данных;
  • Отсутствие неполадок в прошивке блока.

Как происходит послойное смесеобразование

Во время работы послойного типа дроссельная заслонка системы практически открыта полностью, при этом заслонки впуска закрыты полностью. Поступление воздуха в камеры сгорания происходит на большой скорости, при этом образуется воздушный вихрь. Топливо при этом впрыскивается в зону свечей сгорания, на последнем этапе такта сжатия. Когда топливновоздушная смесь воспламеняется, вокруг нее образуется теплоизоляция из чистого воздуха.

Распределенный впрыск — Энциклопедия журнала "За рулем"

В системе центрального впрыска подача смеси и ее распределение по цилиндрам осуществляются внутри впускного коллектора единственной форсункой (Позиция 5 на рисунке).

Более современная система - распределенного впрыска топлива - отличается тем, что во впускном тракте каждого цилиндра устанавливается отдельная форсунка, которая в определенный момент впрыскивает дозированную порцию бензина на впускной клапан соответствующего цилиндра. Бензин, поступивший в цилиндр, испаряется и перемешивается с воздухом, образуя горючую смесь.

Схема системы распределенного впрыска топлива Motronic:
1 — подача топлива;
2 — поступление воздуха;
3 — дроссельная заслонка;
4 — впускной трубопровод;
5 — форсунки;
6 — двигатель

Двигатели с такими системами питания обладают лучшей топливной экономичностью и пониженным содержанием вредных веществ в отработавших газах по сравнению с карбюраторными двигателями. Работой форсунок управляет электронный блок управления (ЭБУ), представляющий собой специальный компьютер, который получает и обрабатывает электрические сигналы от системы датчиков, сравнивает их показания со значениями, хранящимися в памяти компьютера, и выдает управляющие электрические сигналы на электромагнитные клапаны форсунок и другие исполнительные устройства. Кроме того, ЭБУ постоянно проводит диагностику системы впрыска топлива и при возникновении неполадок в работе предупреждает водителя с помощью контрольной лампы (Check или Check engine), установленной в щитке приборов. Серьезные неполадки записываются в памяти блока управления и могут быть считаны при проведении диагностики.
Система питания с распределенным впрыском имеет следующие составные части:
— система подачи и очистки топлива;
— система подачи и очистки воздуха;
— система улавливания и сжигания паров бензина;
— электронная часть с набором датчиков;
— система выпуска и дожигания отработавших газов.

Распределенный впрыск топлива или непосредственный что лучше?

Дорогие друзья, сегодня узнаем много интересного о впрыске системы питания. И так: распределенный впрыск топлива или непосредственный? Что лучше и чем они отличаются?

Допустим у вас пришло время осуществить вашу мечту и вы серьезно взялись за выбор автомобиля. Дело серьёзное, и если выбор цвета и формы машины даётся довольно легко, то с подбором типа мотора могут возникнуть трудности, особенно у неподготовленных в техническом плане людей.

Если так, тогда вам однозначно следует внимательно прочитать эту статью.

Распределенный впрыск топлива: экономно и экологично

Не секрет, что распределённый впрыск топлива (инжекция)  – это современная технология, тесно связанная со сложной электроникой. Главной её «фишкой» является наличие индивидуальной форсунки у каждого цилиндра бензинового мотора.

Но, на самом деле, похожие системы, правда, имеющие механическое управление, появились ещё в конце ХIХ – начале ХХ веков. Использовались они в авиации, в гоночных машинах и иногда их интерпретации даже выходили на массовый автомобильный рынок.

Настоящий же бум распределенный впрыск пережил с появлением доступных микропроцессоров в конце 80-х годов и пользуется уважением у производителей транспортных средств и по сей день.

Перейдём к принципу работы и разновидностям системы распределенного впрыска (кстати, её ещё называют многоточечной системой).

Как мы уже упомянули, ключевой особенностью данной технологии являются топливные форсунки, которые устанавливаются по одной перед впускными клапанами каждого цилиндра двигателя.

Таким образом, в отличие от моновпрыска, удаётся добиться равномерного распределения топливно-воздушной смеси по цилиндрам, а также точной её дозировки.

В целом данная схема расположения форсунок позволила инженерам значительно повысить экологичность моторов, а также сделать их менее прожорливыми. Контролирует весь этот ансамбль электронный блок управления (ЭБУ).

Он при помощи многочисленных датчиков, передающих данные о температуре, положении педали газа, количестве поступающего воздуха и прочих параметрах, вычисляет оптимальный объём бензина для впрыска и в нужный для этого момент подаёт управляющий сигнал на открытие форсунок.

Момент впрыск топлива

Кстати, о времени открытия форсунок. Тут не всё так просто, и системы распределённого впрыска различаются в зависимости от того, в каком порядке происходит активация этих элементов. Существуют такие варианты впрыска:

  • одновременный;
  • попарно-параллельный;
  • фазированный.

Одновременный

При одновременной инжекции бензина все форсунки открываются единомоментно, и происходит это за один полный рабочий цикл двигателя (два оборота коленчатого вала). Не считаю это разумным ходом и не понимаю зачем лишний расход топлива.

Видимо это практиковалось на заре изобретения такого метода, когда не очень беспокоились об экологии и бензин был дешевый.

Попарно-параллельный

При попарно-параллельном открытии процесс разбивается таким образом, чтобы в один момент времени впрыск производили только две форсунки и только тех цилиндров, которые переходят в такты впуска и выпуска.

Здесь тоже наблюдается лишний впрыск, зачем он нужен в такте выпуска. Говорят это помогает при запуске двигателя в аварийном режиме. Ну хоть единовременно, и то хорошо.

Фазированный

Но самым современным из перечисленной тройки является фазированный алгоритм работы системы  распределенного впрыска топлива и используется в современных автомобилях. Он предусматривает включение каждой форсунки непосредственно перед тактом впуска соответствующего ей цилиндра. Это конечно разумно и правильно.

Главное в таком впрыске то, что форсунка впрыскивает топливную смесь во впускной коллектор на входе в цилиндр, непосредственно на впускной клапан. Впрыск производится на такте ВПУСК.

В погоне за показателями

Выше мы уже говорили о том, что система многоточечной инжекции позволила двигателям стать гораздо более «чистыми» по сравнению с предшественниками, оснащёнными моновпрыском или карбюратором.

Тем не менее, защитникам окружающей среды этого было мало и с каждым годом автопроизводителям приходилось учитывать всё более жёсткие экологические нормы.

Чем же отличается распределенный впрыск топлива от непосредственного?

А вот в чем. Как уже было сказано выше, при распределенном впрыске, смесь поступает в коллектор в область впускного клапана. А при непосредственном впрыске, прямо в камеру сгорания, минуя впускной коллектор.

Непосредственный впрыск

Непосредственный впрыск более точен и подаваемое давление топливной смеси выше, чем у распределенного впрыска. Такой принцип экономичнее (до 20% экономии топлива). экологичнее (топливо лучше сгорает). Но все же такой тип системы не лишен недоствтков и конструкторы пошли дальше.

А вот что из этого вышло, и какие технологии появились в результате, в Комбинированная система впрыска топлива TFSI.

 

 

//www.youtube.com/watch?v=lW7UOR68poQ

 

До встречи на страницах блога!

Распределенный впрыск топлива

Центральный впрыск топлива или моновпрыск

Благодаря простоте, надежности и сравнительно невысокой стоимости система центрального впрыска (моновпрыска, точечного впрыска) нашла применение на недорогих автомобилях. При этом она уступает системе распределенного впрыска по мощностным и экономическим показателям, так как допускает образование топливной пленки на стенках впускного трубопровода, как и в случае применения карбюратора.
Кроме того, из-за большого расстояния между форсункой и впускными клапанами ухудшается работа двигателя на режиме разгона, а значительные габаритные размеры самой форсунки увеличивают гидравлическое сопротивление впускной системы.

По этим причинам системы питания бензиновых двигателей, использующие центральный впрыск (моновпрыск) в настоящее время уступили место системам с распределенным и непосредственным впрыском, лишенным описанных выше недостатков.

***

Принцип действия системы с центральным впрыском

Форсунка 2 (Рис. 1), управляемая электронным блоком управления (ЭБУ) 4, подает топливо во впускной трубопровод.
Воздух, поступающих из воздухоочистителя, проходит через измеритель 1 расхода воздуха, смешиваясь с бензином, образует топливовоздушную смесь. Бензин из топливного бака подается через фильтра 6 с помощью электрического насоса 7 под давлением 100…150 кПа.

Электронный блок управления (ЭБУ) выдает управляющий сигнал форсунке на основании сигналов, полученных от измерителя 1 расхода воздуха, датчика 8 положения и скорости открытия дроссельной заслонки и датчика 9 температуры охлаждающей жидкости.
От аккумуляторной батареи 5 осуществляется питание электроэнергией электронного блока управления.
Впрыск бензина происходит прерывисто с частотой, соответствующей частоте вращения коленчатого вала.

Форсунка 2 объединена с регулятором 3 давления, дроссельной заслонкой и регулятором 10 холостого блока в одном блоке.

***

Учебные дисциплины
  • Инженерная графика
  • МДК.01.01. «Устройство автомобилей»
  •       Общее устройство автомобиля
  •       Автомобильный двигатель
  •       Трансмиссия автомобиля
  •       Рулевое управление
  •       Тормозная система
  •       Подвеска
  •       Колеса
  •       Кузов
  •       Электрооборудование автомобиля
  •       Основы теории автомобиля
  •       Основы технической диагностики
  • Основы гидравлики и теплотехники
  • Метрология и стандартизация
  • Сельскохозяйственные машины
  • Основы агрономии
  • Перевозка опасных грузов
  • Материаловедение
  • Менеджмент
  • Техническая механика
  • Советы дипломнику
Олимпиады и тесты
  • «Инженерная графика»
  • «Техническая механика»
  • «Двигатель и его системы»
  • «Шасси автомобиля»
  • «Электрооборудование автомобиля»

Особенности многоточечного механизма

Система впрыска используется почти всеми изготовителями авто.

Система по мере прогревания двигателя может демонстрировать должные качества работы на повышенных оборотах. Поломка датчика способствует иногда переходу устройства в полностью аварийный режим, его показания учитывает блок управления в процессе определения дозировки жидкости. Управление таким механизмом сегодня производится посредством специального компьютера, который называется электронным управленческим блоком

Для вычисления нужного момента открытия форсунок важно получать информационные данные от датчиков. Важный показатель – объем потоков, которые поступают в двигатель и измеряются датчиком

В процессе вычисления подачи определенного количества топлива, которое необходимо для бесперебойной работы агрегата, компьютер анализирует другую информацию – это температурные и влажностные режимы, набор прочих параметров.

Рассмотрим и другие отличия агрегатов HPi, GDI, CGI и FSI от модельного ряда MPI-моторов

  1. В системе прямого впрыска, давление проходящего через форсунку топлива, в несколько десятков раз выше, нежели в системе распределенного впрыска. Это достигается благодаря применению ТНВД в конструкции силовых агрегатов с прямым топливовпрыском.
  2. Специальная конструкция форсунок системы прямой топливоподачи позволяет раскручивать капельки бензина на выходе, благодаря чему быстрее осуществляется их испарение. В то время как вся функция форсунки распределительной системы состоит из средств формирования топливного факела.

Как видно, система топливоподачи MPI гораздо проще во всех отношениях. Но, это далеко не все. В двигателях с прямой подачей топлива на их производительность влияет распределение воздуха внутри них и количество впрыснутого топлива в цилиндры. По этой причине поршневая часть в агрегатах с системой прямого впрыска имеет сложную профилированную конструкцию.

Подобную функцию выполняют и клапаны впуска в конструкции коллектора системы прямой подачи топлива. В конструкции HPi, GDI, CGI и FSI агрегатов предусмотрено послойное образование горючей смеси. Это говорит о том, что полностью сгорает лишь небольшое количество топлива, находящееся вблизи свечи зажигания либо происходит процесс разрушения этого облака из горючего для того, чтобы сделать всю рабочую смесь более обогащенной. В силовых бензиновых агрегатах конструкции MPI каналы для впуска топлива необходимы исключительно для впрыска смеси бензина с воздухом в цилиндры, поэтому они не имеют заслонок и винтовой формы, как моторы с прямой топливоподачей.

Такими «наворотами» перечисление отличий системы прямой подачи топлива от распределенной не заканчивается. Однако, большинство заметных моментов уже описаны выше. Если копнуть поглубже, то стоит отметить, что топливный насос высокого давления, наличие специального впускного коллектора, поршневой части особой конструкции и сложной системы форсунок отчасти можно отнести к недостаткам, наличие которых вовсе не говорит, что лишенным этого двигателям MPI придется сойти с дистанции. Во всяком случае, в ближайшее время.

Но, рано или поздно, это все же произойдет. И опять-таки по той же причине, которая относительно недавно сделала карбюратор и систему центральной подачи топлива достоянием политехнических музеев – отсутствие у системы распределенной подачи бензина высоких показателей экономии топлива без потери мощности силового агрегата, и большое количество вредных соединений в выхлопных газах автомобиля. Проведенные тестирования систем топливоподачи выявили, что силовые агрегаты с системой прямого впрыска топлива в отличие от других моторов, имеющих одинаковый объем, позволяют экономить порядка 20-25% топлива, при этом их мощность возрастает на 10%. Естественно, что ни один из существующих автопроизводителей не станет пренебрегать заявленными удовольствиями!

Но, наличие большого количества преимуществ вовсе не говорит об отсутствии недостатков. У системы прямой подачи топлива есть свой «скелет в шкафу». Если рассматривать экологическую составляющую использования прямого впрыска, то она практически идеальна, за исключением одного «но» – повышенного содержания сажи в выхлопных газах. Это и делает систему прямой топливоподачи единственным конкурентом дизельным силовым агрегатам. А это уже реальная возможность FSI поладить с MPI. Это было бы классно, но, во всяком случае, этим системам придется ладить друг с другом в одном двигателе.

Именно эту идею и воплотили в жизнь конструкторы компании Volkswagen, объединив в одном моторе обе системы MPI и FSI. Двигатели 1,8 и 2,0 TFSI относятся к третьему поколению агрегатов EA888.

Устройство

Система в целом имеет в составе основные узлы.

  1. Бак топлива – является компактным элементом, который имеет насос, фильтр для чистки от механических частиц. Он предназначен для хранения топлива.
  2. Инжектор используется с целью образования смеси – эмульсии, а также для ее подачи в цилиндры.
  3. Блок управления – его установка осуществляется непосредственно на двигателях с инжектором.
  4. Топливный насос – используется обычно традиционный вариант. Он представлен электрическим двигателем с высокой мощностью.

Таким образом, рассматриваемый механизм является простым и прогрессивным, позволяет добиваться нужных результатов при его использовании и ездить с комфортом.

Системы с распределенным впрыском топлива

Топливо подается
вблизи впускных клапанов каждого
цилиндра с помощью механических или
электромеханических форсунок. Преимущества
распределенно­го впрыска по сравнению
с центральным:

    • экономия топлива
      за счет его более равномерного
      распределения по ци­линдрам. В
      системах с центральным впрыском подача
      топлива регулирует­ся под цилиндр,
      получающий наиболее бедную смесь, в
      результате суммар­ное потребление
      топлива возрастает;

    • в системах с
      распределенным впрыском есть возможность
      оптимизировать конструкцию впускного
      коллектора под подачу максимального
      количества воздуха, в результате с
      двигателя снимается большая мощность;

    • за счет подачи
      топлива непосредственно в зону впускных
      клапанов умень­шается транспортное
      запаздывание, двигатель быстрее
      реагирует на изме­нение положения
      дроссельной заслонки;

    • за счет сокращения
      транспортного запаздывания в системе
      стабилизации стехиометрического
      состава топливовоздушной смеси по
      сигналу с датчика кислорода повышена
      частота переключений «бедная смесь —
      богатая смесь». Это улучшает работу
      каталитического нейтрализатора,
      уменьшается содержание токсичных
      веществ в выхлопных газах.

В системах
распределенного постоянного впрыска,
нр. K-Jetronic
фир­мы BOSCH,
количество подводимого воздуха непрерывно
измеряется расходо­мером, а масса
впрыскиваемого топлива пропорциональна
объему поступающего воздуха. Система
поддерживает стехиометрическое
соотношение 1:14,7 в ТВ-смеси, кроме
переходных режимов и работы двигателя
с полной нагрузкой. Топливо впрыскивается
постоянно, его количество регулируется
дозатором-рас­пределителем, управляемым
расходомером воздуха и регулятором
управляющего давления. В свою очередь
воздействие регулятора управляющего
давления определяется величиной
подводимого к нему разреженияво
впускном коллекторе и температурой ОЖ.
В этой чисто механической системе
используются датчики температуры на
основе биметаллических пластин. Датчики
управляют работой дозатора-распределителя
через систему диафрагм и патрубков.

В системах
распределенного постоянного впрыска
с электронным управле­нием, нр. в
KE-Jetronic,
используется больше датчиков, информация
с которых обрабатывается в микропроцессорном
ЭБУ. Управляющее давление в
дозаторе-распределителе меняется
электрогидравлическим регулятором по
командам ЭБУ. За счет электронного
управления лучше оптимизировано
дозирование топлива.

Наиболее совершенными
являются системы прерывисто­го
распределенного впрыска топлива. В них
давление подводимого к форсункам топлива
поддерживается постоянным по отношению
к впускному коллектору. Ко­личество
подаваемого топлива регулируется
временем включения электромагнит­ных
форсунок, управляемых непосредственно
от ЭБУ, чем достигается высокое
быстродействие и точность дозирования.
Неотъемлемыми частями современных
систем подачи топлива с прерывистым
впрыском являются:

• датчик массового
расхода воздуха (массметр), обычно
термоанемометриче-ский;

• система дозирования
топлива: электробензонасос, топливный
фильтр, рам­па форсунок, электромагнитные
форсунки, регулятор давления топлива.
Бензонасос подает топливо в рампу под
давлением 250…350 кПа. Регулятор давления
поддерживает постоянный перепад давления
между впускной тру­бой и нагнетающей
магистралью рампы, излишки топлива
возвращаются в бензобак по линии слива.
Соленоиды форсунок управляются силовыми
транзисторами эбу.
В некоторых
системах имеется дополнительная
пуско­вая форсунка, которая
устанавливается за дроссельной заслонкой
и вклю­чается при холодном пуске
двигателя;

• датчик кислорода,
сигнал которого используется ЭБУ для
работы в замкну­том режиме стабилизации
стехиометрического состава топливовоздушной
смеси.

Виды систем впрыска дизельных ДВС

На современных дизельных двигателях применяются такие системы впрыска, как система насос-форсунки, система Сommon Rail, система с рядным или распределительным ТНВД (топливным насосом высокого давления).

ТНВД является центральным элементом любой топливной системы дизельного двигателя.

В дизелях подача горючей смеси может осуществляться как в предварительную камеру, так и напрямую в камеру сгорания (непосредственный впрыск).

На сегодняшний день предпочтение отдается системе непосредственного впрыска, которую отличает повышенный уровень шума и менее плавная работа двигателя, по сравнению с впрыском в предварительную камеру, но при этом обеспечивается гораздо более важный показатель – экономичность.

Система впрыска насос-форсунки

Подобная система применяется для подачи и впрыска топливной смеси под высоким давлением центральным устройством – насос-форсунками.

По названию можно догадаться, что ключевой особенностью данной системы является то, что в единственном устройстве (насос-форсунке) объединены сразу две функции: создание давления и впрыск.

Конструктивным недостатком данной системы является то, что насос оснащен приводом постоянного типа от распредвала двигателя (не отключаемый), который приводит к быстрому износу конструкции. Из-за этого производители все чаще делают выбор в пользу системы впрыска Сommon Rail.

Система впрыска Сommon Rail (аккумуляторный впрыск)

Это более совершенная система подачи ТС для большинства дизельных двигателей. Ее название пошло от основного конструктивного элемента – топливной рампы, общей для всех форсунок. Сommon Rail в переводе с английского как раз и означает – общая рампа.

В такой системе топливо подается к топливным форсункам от рампы, которую еще называют аккумулятором высокого давления, из-за чего у системы появилось и второе название – аккумуляторная система впрыска.

В системе Сommon Rail предусмотрено проведение трех этапов впрыска – предварительного, основного и дополнительного. Это позволяет уменьшить шум и вибрации двигателя, сделать более эффективными процесс самовоспламенения топлива, уменьшить количество вредных выбросов в атмосферу.

Для управления системами впрыска на дизелях предусмотрено наличие механических и электронных устройств. Системы на механике позволяют контролировать рабочее давление, объем и момент впрыска топлива. Электронные системы предусматривают более эффективное управление дизельными ДВС в целом.

Недостатки

  • Непосредственный впрыск имеет весьма сложное устройство системы, следовательно, повышенную стоимость по сравнению с традиционной программой.
  • К элементам и составным частям такой системы предъявляется большое количество требований по качеству, прочности и точности деталей, что делает себестоимость GDI более высокой.
  • Форсунки при GDI (прямой впрыск) должны выдерживать высокие температурные показатели и прочие жесткие условия, а также давление разрушительного характера.

Таким образом, система имеет «подводные камни», способные изменить отношение к ней крупных мировых производителей. Тем не менее нет удивительного в том, что через несколько лет львиная доля представителей автомобильного рынка перейдет именно на такие двигатели.

Насколько актуален впрыск

Пользователи задаются вопросом актуальности и истинных преимуществ впрыска

Стоит ли заострять на нем внимание, или «игра не стоит свеч». Рассмотрим ситуацию на конкретном примере

Известная компания General Motors занимается изготовлением двух типов двигателей с разными видами впрыска бензина – это модель объемом в 3.6 литра V6. Первый вариант впрыска – непрямой, двигатель сгорания с ним доходит до 263 л. с., а если рассматривать GDI, то данный показатель достигает значения в 304 л. с. Невзирая на высокую мощность работы, которую имеет двигатель сгорания, расход бензина второго устройства более низкий.

Технология GDI не нова и появилась в 20-м веке, но многие изготовители авто стали широко ее использовать при производстве моделей массового потребления. В связи с дорогим производством и отсутствием компьютерных техник, применялся только механический карбюратор, что продолжалось до 80-х годов. Но резкое повышение цен на топливо и другие факторы привели к ужесточению законодательных норм, направленных на снижение расхода, и к возникновению GDI – бензина в камеру двигателей внутреннего сгорания.

Системы распределённого впрыска топлива

Каждый цилиндр системы распределённого впрыска топлива обслуживается собственной электромагнитной форсункой. Каждая форсунка такой системы впрыскивает топливо во впускной коллектор пред впускными клапанами каждого цилиндра. Таким образом, только часть внутреннего объёма впускного коллектора работающего двигателя заполняется подготовленной топливной смесью. Как и в системе точечного впрыска топлива, здесь впрыск осуществляется не непрерывной струёй топлива, а подаётся порциями. Количество подаваемого топлива регулируется путём изменения продолжительности открытого состояния форсунки.Электромагнитные топливные форсунки имеют некоторую инерционность. Проявляется эта инерционность как задержка открытия и задержка закрытия клапана форсунки относительно управляющего напряжения. Задержка открытия клапана форсунки может составлять около 1,5 mS, кроме того, она может изменяться с изменением величины напряжения на аккумуляторной батарее. Задержка закрытия клапана форсунки может составлять около 1,0 mS. Когда двигатель работает под нагрузкой, длительность впрыска топлива может составлять несколько единиц или даже десятки миллисекунд, то есть -длительность впрыска топлива при этом значительно превышает время задержки срабатывания клапана форсунки, и за счёт этого инерционность форсунки сказывается мало заметно.Когда двигатель работает при малых нагрузках или на холостом ходу, длительность впрыска значительно уменьшается, и становится сравнимой с временем задержки срабатывания клапана форсунки. Из-за этого, инерционность форсунки может сказываться значительно сильнее и точность дозирования количества впрыскиваемого топлива может сильно снизиться. Поэтому, для таких форсунок не используют управляющие импульсы продолжительностью менее 1,5 mS. Кроме того, инерционность форсунок, обслуживающих разные цилиндры одного и того же двигателя со значительным пробегом может заметно различаться, что вносит дополнительную погрешность дозирования малых порций топлива.

Другой вариант классификации

Система может быть нескольких видов и вариантов.

  • Одновременная комбинация – с практической точки зрения встречается редко. За один оборот все форсунки в ней срабатывают в одновременном порядке.
  • Параллельная работа (попарно) – в течение одного оборота вала происходит парное срабатывание форсунок, по одному разу за оборот.
  • Фазированная, последовательная – когда за выполнение валом одного оборота происходит отдельное регулирование любой из форсунок. При этом открытие элемента осуществляется 1 раз перед впуском.

Независимо от варианта классификации все механизмы имеют различия по ряду параметров, учитываемых в ходе эксплуатации.

Трудности реализации и необходимые профилактические меры

При всех положительных моментах эксплуатации двигателя на переобедненных смесях у современных автомобилей имеются проблемы, у которых нет «общих точек соприкосновения» со старым семейством MPI-впрыска, что в свою очередь вызывает трудности в диагностике. Чтобы понять, какие изменения последовали в конструкции, и сравнить, надо обратиться к самому началу появления данного типа системы впрыска в производстве. Конкретную реализацию разберем на примере моделей VW AG. Итак, сравнение поршневой группы атмосферного и турбированного ДВС…

В первом случае видна схема «встречных потоков» описанных ранее, во втором очевидно играет гораздо большую роль предварительное завихрение потока воздуха во впускном коллекторе (в этом одно из различий исполнения данных моторов) и полная направленная циркуляция в полном объеме цилиндра.

Предварительное завихрение воздушного потока во впускном коллекторе и обедняет классическую однородную (гомогенную) смесь при смешивании воздушного потока с топливом. На практике первая схема обеспечивает лучшее охлаждение поршня (а с ним – эффективную борьбу с детонационными явлениями при рабочем цикле, о чем подробнее поговорим далее). В то же время для таких моторов характерна проблема зимнего пуска, при котором свечи просто «заливало» топливом, и мотор не запускался, а самое смешное в этом вопросе (думаю, владельцы Passat B6 первых годов выпуска об этом хорошо помнят), что самая простая «жигулевская» и даже не первой свежести свеча помогала запустить замерзший ДВС, после чего следовала еще одна замена – возвращение оригинальных свечей назад. Последовало порядка десятка изменений версий программного обеспечения блока управления ДВС, прежде чем удалось решить эту проблему. Разумеется, владельцев ДВС с турбокомпрессором такие проблемы не коснулись. Пуск на гомогенной смеси при минусовой температуре воздуха отработан автопроизводителями до мелочей. В дальнейшем на цепных моторах 2008 года и далее эксперименты с формой днища поршня проводить не стали. Обычно такие поршни обладают плоской поверхностью со стандартными выемками под клапана.

Или имеют ярко выраженную сферическую вогнутую поверхность по всей ширине гильзы цилиндров, назначение которой будет понятно немного позже.

А теперь посмотрим на организацию подачи топлива и воздуха на этих ДВС:

Используются форсунки с 6-ю отверстиями, что положительно влияет на качество распыления топлива

Обратите внимание на расположение топливной форсунки и впускного канала: они находятся в одной плоскости, а это значит, суммарного восходящего потока уже не получится. Учитывая, что топливо должно успеть равномерно распределиться по топливовоздушному заряду, получаем единственный вариант —организацию встречного потока с довольно большим дефицитом по времени эффективного распыления

Разумеется, об эффективном охлаждении поршней в этом случае речь тоже не идет. Давайте посмотрим, что думают об этом сами создатели.

Довольно простое решение подачи топлива непосредственно в зону свечи, т.е. топливный заряд оборачивается, условно говоря, в «кокон» воздушного заряда (эффект дополнительного охлаждения смеси достигается ее изолированием воздушным потоком, если говорить точнее). В итоге в зоне электрода свечи мы имеем обогащенную, легко воспламеняемую смесь, а в остальных местах камеры сгорания – переобедненную. Но путь смешивания топливного и воздушного зарядов очень короткий, в отличие от схемы, обсуждаемой ранее, а нормальное перемешивание, с отражением от поверхности поршня и равномерным распределением по фронту потока (как это было с атмосферным мотором), к сожалению, невозможно. Именно этот аспект и влияет на возможную проблемную работу ДВС в целом, а причина возникновения трудностей стабильного воспламенения довольна простая:

Попарно-параллельный впрыск топлива

Для уменьшения зависимости качества подготовки топливовоздушной смеси от момента впрыска топлива, а так же для улучшения точности дозирования топлива на переходных режимах работы двигателя, топливные форсунки были разделены на группы согласно порядку работы цилиндров и соединены попарно-параллельно — половина форсунок соединена параллельно и управляется своим выходным силовым транзистором блока управления двигателем, другая половина форсунок так же соединена параллельно и управляется своим, вторым выходным силовым транзистором блока управления двигателем.Управление форсунками одной группы происходит одновременно — все форсунки одной группы работают синхронно. Когда форсунки первой группы впрыскивают топливо, форсунки второй группы закрыты, и наоборот. При этом, первая и вторая группы форсунок, так же как и в системе параллельного впрыска топлива, впрыскивают топливо дважды за один цикл работы 4-х тактного двигателя (за два оборота коленвала).Осциллограммы напряжения сигналов системы управления 4-х цилиндрового 4-х тактного двигателя, осуществляющей попарно-параллельный впрыск топлива, демонстрирующие схему впрыска топлива данной системы. Порядок работы цилиндров 1 — 3 — 4 — 2. В данном случае в первую пару объединены форсунки, обслуживающие цилиндры №1 и №4, а во вторую пару объединены форсунки, обслуживающие цилиндры №2 и №3. Но встречаются системы, где при таком же порядке работы цилиндров двигателя, форсунки объединены в пары по-другому.напряженияуправляющихимпульсовтопливнойнапряженияуправляющихимпульсовтопливнойнапряженияуправляющихимпульсовтопливнойнапряженияуправляющихимпульсовтопливнойфорсункой форсункой форсункой форсункой1Осциллограмма 1-го цилиндра.2Осциллограмма 2-го цилиндра.3Осциллограмма 3-го цилиндра.4Осциллограмма 4-го цилиндра.5Осциллограмма напряжения выходного сигнала датчика положения / частоты вращения коленчатого вала. За один полный оборот коленвала датчик генерирует 58 импульсов и один пропуск, продолжительность которого соответствует продолжительности двух импульсов. Соответственно, за один полный цикл работы 4-х тактного двигателя (за два оборота коленвала) датчик генерирует такие пропуски дважды.7 Импульс синхронизации с моментом зажигания в первом цилиндре.Следует заметить, что в момент пуска двигателя блок управления двигателем переключается на параллельную схему впрыска топлива, то есть, включает и выключает все топливные форсунки одновременно.

Преимущества

Система обладает существенными достоинствами по сравнению с другими технологиями и механизмами:

  • Непосредственный впрыск позволяет обеспечивать наиболее точное управление топливным количеством (дозировкой) и воздухом.
  • Внизу располагается инжектор, что способствует распылению, превращающему бензин в маленькие капельки.
  • В такой системе происходит полноценное сгорание бензина, и это важный показатель, поскольку в условиях высоких оборотов на это выделяется мало времени.

Большое число компаний стремится перейти на изготовление машин именно с такими агрегатами, мотивируя это высокой мощностью, возможностью снижения расхода топлива и другими преимуществами.

Распределенный впрыск топлива

История создания распределенного впрыска

Первое приспособление, напоминающее современную систему распределенного впрыска топлива, придумал для своих двигателей английский инженер и изобретатель Герберт Стюарт еще в конце XIX века.

Первую российскую систему впрыска для бензиновых авиационных двигателей разработали в 1916 году конструкторы Микулин и Стечкин

В дальнейшем его идеи развили и усовершенствовали Роберт Бош и Клесси Камминс, и конструкция к уже в двадцатые годы нашла массовое применение в топливной системе дизельных двигателей. Первую российскую систему впрыска для бензиновых авиационных двигателей разработали в 1916 году конструкторы Микулин и Стечкин.

Впервые система распределенного впрыска бензина была применена на двигателе, изобретенном шведским инженером Йонасом Хессельманом в 1925 году. Согласно замыслу Хессельмана, топливо необходимо было впрыскивать в каждый цилиндр ближе к концу такта сжатия, чтобы воспламенение происходило уже непосредственно перед началом хода поршня вниз. Двигатель Хессельмана обычно запускался на бензине, а затем при работе использовался дизель или керосин.

Прямой впрыск топлива в каждый цилиндр использовался в авиационных двигателях времен Второй мировой производства Junkers, Daimler-Benz и BMW с целью обеспечить пилотам возможность выполнять фигуры высшего пилотажа без риска остановки мотора. На германских авиационных двигателях использовалась адаптированная система впрыска дизельного топлива фирмы Bosch. Устройства назывались карбюраторами, но топливо подавалось не самотеком, а при помощи насосов высокого давления.

Первые серийные системы управления распределенным впрыском были механическими, их производство в 1951 начала компания Bosch

Первую систему распределенного впрыска, управляемую электроникой, производства итальянской фирмы Caproni-Fuscaldo установила на гоночный автомобиль Alfa Romeo 6C2500 в 1940 году. Шестицилиндровый двигатель был снабжен индивидуальными форсунками.

Первые серийные системы управления распределенным впрыском были механическими. Их производство в 1951 начала компания Bosch. Одним из первых такой системой в 1954 оснастили легендарное купе Mercedes-Benz 300 SL «Крыло чайки». В дальнейшем механические системы начали устанавливать и на более массовые модели, к примеру, на автомобили Audi 100.

Топливная рейка с форсунками и регулятором давления.

Эпоха электронного управления системами впрыска бензина началась в восьмидесятые годы с появлением дешевых микропроцессоров. Первым серийным автомобилем с инжектором, управляемым электронным контроллером на основе микропроцессора, был Rambler Rebel 1957 года фирмы Nash - части американского автомобильного концерна AMC. Система впрыска называлась Electrojector, и ее применение позволило поднять мощность восьмицилиндрового двигателя "Бунтаря" на 60 л.с.

Виды распределенного впрыска топлива

В системе распределенного впрыска топливо в каждый цилиндр впрыскивается отдельной форсункой. Существует несколько разновидностей распределённого впрыска. Различаются они по времени открытия форсунок. К примеру, в случае одновременного впрыска все форсунки открываются разом. Если форсунки открываются попарно, впрыск называется попарно-параллельным.

Связующим звеном между современной системой распределенного впрыска и карбюратором был моновпрыск - система, с управляемой компьютером единственной форсункой

Большинство современных автомобилей оснащено системами фазированного впрыска. В этой системе каждая форсунка управляется индивидуально и открывается в наиболее удачный с точки зрения заложенной в блоке управления программы момент, то есть непосредственно перед началом такта впрыска.

Как правило, в топливной системе фазированного впрыска в управляющей программе предусмотрены два дополнительных режима: прогрева и аварийный режим. В случае их задействования фазированный впрыск заменяется попарно-параллельным. Это позволяет двигателю в период прогрева работать в интенсивном режиме и на относительно высоких оборотах. В аварийном режим, в случае неисправности одного из датчиков, показания которого влияют на количество впрыскиваемого топлива, обеспечивается бесперебойная работа двигателя при разной нагрузке. Как правило, поводом для включения аварийного режима становится неисправность основного датчика, показаниями которого руководствуется блок управления при дозировке топлива, - датчика фазы или, иначе, датчика положения распределительного вала.

Последний тип распределенного впрыска - прямой впрыск, представляющий собой разновидность фазированного. В этой системе топливо впрыскивается не во впускной коллектор, а непосредственно в камеру сгорания каждого цилиндра.

Принцип работы распределенного впрыска топлива

Управление системой впрыска современного автомобиля осуществляет компьютер, в автомобильной терминологии носящий название электронного блока управления двигателем.

Для вычисления оптимального момента для открытия топливных форсунок и времени, в течение которого они должны оставаться открытыми, блок управления использует показания различных датчиков.

Масса воздуха, поступающего в двигатель, измеряется датчиком массового расхода воздуха. Это один из важнейших показателей. Кроме него, при определении количества топлива компьютер опирается на данные по температуре двигателя, температуре всасываемого воздуха, скорости вращения коленчатого вала, угла открытия дроссельной заслонки и динамике ее открытия. Рассчитав количество топлива, которое может полностью сгореть при данной массе воздуха в цилиндрах, компьютер подает сигнал форсункам на открытие. Сигналом служит электрический импульс нужной длительности. Во время подачи сигнала форсунки остаются в открытом положении, и топливо, которое в магистрали находится под давлением, впрыскивается во впускной коллектор.

Плюсы и минусы распределенного впрыска топлива

Первое и основное преимущество распределенного впрыска топлива – экономичность. Кроме того, в связи с более полным сгоранием топлива за один цикл автомобили с распределенным впрыском наносят меньше вреда окружающей среде вредными выбросами. При точной дозировке топлива вероятность возникновения неожиданных сбоев в работе при экстремальных режимах (преодоление крутого подъема, например) сведена практически к нулю.

Применение распределенного впрыска продлило жизнь многим популярным автомобилям, которые были бы сняты с производства в связи с низкой топливной экономичностью

Недостаток систем распределенного впрыска в достаточно сложной и всецело зависящей от электроники конструкции. В связи с большим количеством электронных компонентов диагностика и ремонт систем распределенного впрыска возможны только в условиях профессионального сервисного центра.

Как работает система впрыска топлива

Для двигатель для бесперебойной и эффективной работы он должен быть обеспечен нужным количеством топливо / воздушная смесь в соответствии с ее широким спектром требований.

Система впрыска топлива

В автомобилях с бензиновым двигателем используется непрямой впрыск топлива. Топливный насос отправляет бензин в моторный отсек, а затем он впрыскивается во впускной коллектор с помощью инжектора. Имеется либо отдельный инжектор для каждого цилиндра, либо одна или две форсунки во впускной коллектор.

Традиционно топливно-воздушная смесь регулируется карбюратор , инструмент, который отнюдь не идеален.

Его основным недостатком является то, что один карбюратор питает четыре цилиндр двигатель не может подавать в каждый цилиндр точно такую ​​же топливно-воздушную смесь, потому что некоторые цилиндры находятся дальше от карбюратора, чем другие.

Одно из решений - поместиться сдвоенные карбюраторы, но их трудно правильно настроить. Вместо этого многие автомобили теперь оснащаются двигателями с впрыском топлива, в которых топливо подается точными порциями.Двигатели, оснащенные таким образом, обычно более эффективны и мощнее карбюраторных, а также могут быть более экономичными и менее опасными. выбросы .

Впрыск дизельного топлива

В впрыск топлива система в автомобилях с бензиновым двигателем всегда косвенная, бензин впрыскивается во впускной патрубок многообразие или впускной порт, а не непосредственно в камеры сгорания . Это гарантирует, что топливо хорошо смешивается с воздухом перед тем, как попасть в камеру.

Многие дизельные двигатели однако используется прямой впрыск, при котором дизельное топливо впрыскивается непосредственно в цилиндр, заполненный сжатым воздухом. Другие используют непрямой впрыск, при котором дизельное топливо впрыскивается в камеру предварительного сгорания специальной формы, которая имеет узкий канал, соединяющий ее с камерой сгорания. крышка цилиндра .

В цилиндр втягивается только воздух. Он так сильно нагревается сжатие распыленное топливо, впрыскиваемое в конце ход сжатия самовоспламеняется.

Базовая инъекция

Все современные системы впрыска бензина используют непрямой впрыск. Специальный насос отправляет топливо под давление из топливный бак в моторный отсек, где, все еще находясь под давлением, он распределяется индивидуально по каждому цилиндру.

В зависимости от конкретной системы топливо подается во впускной коллектор или впускной канал через инжектор . Это работает как спрей сопло из шланг , чтобы топливо выходило в виде мелкого тумана.Топливо смешивается с воздухом, проходящим через впускной коллектор или канал, и топливно-воздушная смесь поступает в горение камера.

Некоторые автомобили имеют многоточечный впрыск топлива, при котором каждый цилиндр получает питание от собственной форсунки. Это сложно и может быть дорого. Чаще используется одноточечный впрыск, когда один инжектор питает все цилиндры, или один инжектор на каждые два цилиндра.

Форсунки

Форсунки, через которые распыляется топливо, вкручиваются соплами вперед либо во впускной коллектор, либо в головку блока цилиндров и расположены под углом так, чтобы струя топлива попадала во впускное отверстие. клапан .

Форсунки бывают двух типов, в зависимости от системы впрыска. Первая система использует непрерывный впрыск где топливо впрыскивается во впускное отверстие все время работы двигателя. Форсунка просто действует как распылительная форсунка, разбивая топливо на мелкие брызги, но фактически не контролирует поток топлива. Количество распыляемого топлива увеличивается или уменьшается механическим или электрическим блоком управления - другими словами, это похоже на включение и выключение крана.

Другая популярная система - впрыск по времени (импульсный впрыск) где топливо доставляется пакетами, чтобы совпасть с индукция инсульт цилиндра. Как и в случае с непрерывным впрыском, синхронизированный впрыск можно также контролировать механически или электронно.

Самые ранние системы управлялись механически. Их часто называют впрыском бензина (сокращенно PI), и поток топлива регулируется механическим регулятором. Эти системы страдают от недостатков, заключающихся в том, что они сложны с механической точки зрения и плохо реагируют на нажатие педали газа.

Механические системы в настоящее время в значительной степени вытеснены электронный впрыск топлива (сокращенно EFi). Это происходит благодаря повышению надежности и снижению затрат на электронные системы управления.

Типы топливных форсунок

Форсунка механическая

Могут быть установлены два основных типа инжектора, в зависимости от того, управляется ли система впрыска механически или электронно.В механической системе инжектор подпружиненный в закрытое положение и открывается давлением топлива.

Электронный инжектор

Форсунка в электронной системе также удерживается закрытой пружиной, но открывается с помощью электромагнит встроен в корпус инжектора. В электронный блок управления определяет, как долго инжектор остается открытым.

Механический впрыск топлива

Lucas система механического впрыска топлива

В системе Lucas топливо из бака под высоким давлением перекачивается в топливный аккумулятор.Оттуда он попадает в распределитель топлива, который отправляет порцию топлива в каждую форсунку, откуда оно попадает во впускное отверстие. Воздушный поток регулируется заслонкой, которая открывается при нажатии на педаль акселератора. По мере увеличения потока воздуха распределитель топлива автоматически увеличивает поток топлива к форсункам, чтобы поддерживать правильную балансировку топливно-воздушной смеси. Для холодного запуска используется воздушная заслонка на приборной панели или, на более поздних моделях, микропроцессорный блок управления приводит в действие специальный инжектор холодного запуска, который впрыскивает дополнительное топливо для создания более богатой смеси.Как только двигатель прогреется до определенной температуры, термовыключатель автоматически отключает форсунку холодного пуска.

Механический впрыск топлива использовался в 1960-х и 1970-х годах многими производителями на своих высокопроизводительных спортивных автомобилях и спортивных седанах. Одним типом, установленным на многих британских автомобилях, включая Triumph TR6 PI и 2500 PI, была система Lucas PI, которая представляет собой систему с таймером.

А высокого давления электрический топливный насос установлен рядом с топливным баком, нагнетает топливо под давлением 100 фунтов на квадратный дюйм до уровня топлива аккумулятор .Это в основном краткосрочный резервуар который поддерживает постоянное давление подачи топлива, а также сглаживает импульсы топлива, поступающие из насоса.

Из аккумулятор , топливо проходит через бумагу элемент фильтр а затем подается в блок управления дозатором топлива, также известный как распределитель топлива . Этот агрегат приводится в движение распредвал и его задача, как следует из названия, состоит в том, чтобы распределить топливо по каждому цилиндру в нужное время и в нужных количествах.

Количество впрыскиваемого топлива регулируется заслонкой, расположенной в воздухозаборнике двигателя.Заслонка находится под блоком управления и поднимается и опускается в ответ на воздушный поток - когда вы открываете дроссельную заслонку, «всасывание» из цилиндров увеличивает воздушный поток, и заслонка поднимается. Это изменяет положение челночного клапана в блоке управления дозированием, чтобы позволить большему количеству топлива впрыскиваться в цилиндры.

От дозатора топливо по очереди подается к каждой из форсунок. Затем топливо брызгает во впускное отверстие в головке блока цилиндров. Каждый инжектор содержит подпружиненный клапан, который удерживается закрытым за счет давления пружины.Клапан открывается только при впрыскивании топлива.

При холодном запуске вы не можете просто перекрыть часть воздушного потока, чтобы обогатить топливно-воздушную смесь, как в случае с карбюратором. Вместо этого ручное управление на приборной панели (напоминающее ручку воздушной заслонки) или, на более поздних моделях, data-term-id = "1915"> микропроцессор

.

Что такое впрыск топлива? (с иллюстрациями)

Впрыск топлива - это система, которая подает топливо транспортного средства непосредственно в цилиндры или во впускной коллектор двигателя, устраняя необходимость в карбюраторе. Этот впускной коллектор находится перед цилиндрами в большинстве двигателей с впрыском топлива. Количество газа, подаваемого в двигатель, контролируется электронными датчиками, которые гарантируют, что количество газа будет доступно для достижения требуемой скорости. Пока электронный датчик в системе работает должным образом, вероятность того, что автомобильный двигатель захлебнется или затопится, практически отсутствует.

Системы впрыска топлива подают топливо непосредственно в цилиндры двигателя автомобиля.

Фактические компоненты систем впрыска топлива имеют некоторые вариации.Например, системы корпуса дроссельной заслонки будут иметь фактические форсунки, расположенные в корпусе корпуса дроссельной заслонки, где они сначала подают топливо во впускной коллектор. Одноточечные системы обеспечивают подачу топлива непосредственно в цилиндры от одного инжектора, в то время как многоточечные системы впрыска топлива будут использовать передаточное отношение одного инжектора для каждого цилиндра в двигателе. Хотя есть некоторые разногласия по поводу того, какой вариант более эффективен, большинство сторонников считают, что любой из методов обеспечит более качественную топливно-воздушную смесь, чем использование карбюратора.

Системы впрыска топлива исключают необходимость в карбюраторе.

Чтобы топливо правильно смешивалось с воздухом, а также эффективно попадало в камеру сгорания, насос создает давление в форсунках.Электронный датчик использует давление насоса, чтобы регулировать количество впрыскиваемого топлива в любой момент времени. Насос непосредственно реагирует на величину давления, прикладываемого к педали газа, которая затем включает электронный датчик и обеспечивает впрыск правильного количества топлива, позволяющего автомобилю ускоряться или поддерживать свою скорость.

Хотя двигатели, использующие впрыск топлива, как правило, имеют меньше эксплуатационных проблем, чем двигатели с карбюратором, процесс выявления и устранения проблемы может быть более дорогостоящим.Тем не менее, преимущества эффективности двигателя в сочетании с более экономичным использованием топлива делают систему очень привлекательной для многих владельцев автомобилей. По мере того, как технология продолжает совершенствоваться, вероятность неисправностей двигателя, вероятно, еще больше снизится.

Владельцы автомобиля с системой впрыска топлива испытывают меньше проблем с эксплуатацией, чем с автомобилем с карбюратором..

Что такое впрыск топлива? Как работает впрыск топлива?

Что делают топливные форсунки

Дроссельная заслонка дроссельной заслонки регулирует поток воздуха к двигателю.
Что происходит, когда вы наступаете на педаль газа? Двигатель набирает обороты, и ваша машина едет быстрее. Вы можете подумать, что это красиво простые вещи, но на самом деле требуется много сложной инженерии, чтобы получить чтобы этот процесс работал безупречно.Большая часть этого - топливо для двигатель, где его можно сжечь для выработки энергии. Твой топливные форсунки распылить бензин во впускное отверстие или непосредственно в цилиндры двигателя, чтобы его можно быстро воспламенить. Чтобы получить газ, нужно выполнить множество действий. к этому моменту, и многие шаги, которые привели к технологии впрыска топлива к этому моменту. Мы расскажем, как газ попадает туда, где он и доставит вас туда, куда вы собираетесь, и мы узнаем о различных разработки в области впрыска топлива по ходу дела.

Как топливный насос перекачивает газ

Прежде чем бензин может вытечь из топливных форсунок, он должен до них добраться. Это то что топливный насос или насосы для. Топливо начинается в топливный бак, пока вы не запустите двигатель. Затем насос начинает подачу топлива через топливопроводы под очень высоким давлением.

В более старых моделях использовались механические насосы, приводимые в движение коленчатый вал или распредвал. Чем быстрее работал двигатель, тем быстрее работал насос. перекачивается, чтобы удовлетворить повышенную потребность двигателя в топливе.Большинство газовых автомобилей и грузовики сегодня используют электрические топливные насосы. Дизельные двигатели по-прежнему используют механические насосы, однако. Электрические топливные насосы работают от электричества и управляются ЭБУ. Это обеспечивает более точный контроль и делает их более эффективными. Некоторые установлены внутри вашего бензобака (где топливо охлаждает их), а некоторые установлены вне бака к раме машины. В некоторых случаях внутренний насос используется для подачи топлива к внешнему насосу.

Независимо от того, где именно и как работает, работа топливного насоса должен перекачивать топливо по топливопроводам, по которым оно может проходить на двигатель.Подача газа в двигатель осуществлялась через ряд различных средств, но первым из них был карбюратор.

Как двигатель получает газ: когда карбюраторы бродили по Земле

Карбюрация была простой системой подачи топлива в двигатель, который предшествовал впрыску топлива. В то время как системы впрыска топлива полагаются на электроника, карбюрация была чисто механическая. Расход топлива увеличился в ответ к потоку воздуха в впускной коллектор.

При нажатии на педаль акселератора открывается бабочка. Клапан в воздухозаборнике называется дроссельной заслонкой. Чем больше открыта дроссельная заслонка, тем в воздухозаборник может поступать больше воздуха. Вот почему прижимать педаль к металлу - это известное как «широко открытое». Приемник имеет суженную область, называемую предприятием. В сужение заставляет воздух двигаться быстрее, что вызывает область низкого давления. В карбюратор имеет выходное отверстие для топлива, называемое жиклером, которое открывается в трубку Вентури.В чем быстрее воздух проходит через трубку Вентури, тем ниже давление и тем больше всасывается газ. Технически, педаль газа не дает двигателю больше газ; это дает двигателю больше воздуха. Увеличенный воздушный поток всасывает больше газа. Так в следующий раз, когда вы захотите, чтобы кто-то ехал быстрее, скажите «топайте по воздуху»!

Карбюрация - это простая система, но со временем она стала устарели и пошли путем динозавра. 1991 год Jeep Grand Wagoneer был Последний дорожный автомобиль предлагался в США с карбюратором.Два самых больших Проблемами с карбюратором были его неэффективность и негибкость. А карбюратор можно настроить для получения идеального соотношения воздух / топливо при определенном обороты двигателя, но чем дальше вы отклоняетесь от этой скорости, тем дальше вы можно получить из идеального соотношения. Простота карбюратора в некоторых способов, его падение, так как у него нет возможности настроить или отрегулировать немного разные сценарии.

Разработка системы впрыска топлива

Хотя впрыск топлива в прошлом стал нормой пару десятков лет технология существует уже давно.Ранняя заправка системы впрыска использовались в двигателях самолетов в начале двадцатого века. Дизельные двигатели используют прямой впрыск топлива с 1920-х годов (у нас будет больше о дизелях и непосредственном впрыске скажу позже). После Второй мировой войны хотродеры начали заменять карбюраторы на топливные форсунки, чтобы авто прибавило мощности. Mercedes-Benz использовал прямой впрыск бензина по образцу с дизельным двигателем в гонках Формулы-1 в 1950-х годах. Он адаптировал технологию к серийный спортивный автомобиль 300SL в 1955 году.Более эффективное сгорание дало то 300SL - отличная мощность и скорость, которые привели его к успеху в гонках.

Впрыск топлива был сложнее и дороже, чем карбюраторы, поэтому его, как правило, использовали только в некоторых спортивных автомобилях 1950-х годов. через 1970-е годы. Многие из этих ранних систем впрыска топлива обычно системы непрерывного впрыска с механическим приводом. Топливо не подавалось в двигатель, как в сегодняшних электронных системах, но работал непрерывно со скоростью которые менялись в зависимости от положения дроссельной заслонки или измеренного расхода воздуха в воздухозаборник.Крайслер предложил ранний аналоговая электронная система в Chrysler 300D и Plymouth Fury. В Однако система была подвержена сбоям и использовалась недолго. С этими осложнений, притягательной силы было недостаточно, чтобы довести впрыск топлива до передний край.

Потребуются ужесточающиеся нормы выбросов двигателя 1970-х и 1980-х, а также нефтяной кризис 1970-х, чтобы довести систему впрыска топлива до перед. Поскольку автопроизводители стремились снизить выбросы и увеличить расход топлива, они поняли, что впрыск топлива приводит к тому, что двигатель сжигает газ больше эффективно.То же преимущество, которое могло обеспечить мощность, могло также сделать автомобили более бережное отношение к окружающей среде и кошельку водителей.


Типы впрыска топлива

Система впрыска дроссельной заслонки

Сначала автопроизводители пробовали простой впрыск дроссельной заслонки. системы, с одной или двумя топливными форсунками, прикрепленными к корпусу дроссельной заслонки. Дроссель Впрыск кузова работал очень похоже на карбюратор. Топливо было добавлено на впускной коллектор. Это было не так эффективно, как более поздние системы впрыска топлива, но у него были определенные преимущества перед карбюраторами.А именно топливо корпуса дроссельной заслонки инжектор мог лучше приспособиться к разным ситуациям. Как упоминалось ранее, карбюратор может быть настроен на подачу идеального количества топлива при определенных оборотах двигателя, но может быть немного слишком бедным или слишком богатым при разных оборотах двигателя. Поскольку Топливная форсунка корпуса дроссельной заслонки с электронным управлением, может дать лучшую соотношение воздух / топливо во всем диапазоне оборотов двигателя.

Многоточечные системы впрыска топлива

Однако впереди было еще много улучшений.Следующий были многопортовые системы впрыска. Они впрыскивают топливо над каждым впускным клапаном. Этот приводит к сжиганию большего количества топлива в камере сгорания и меньшему расходу топлива чем в системах впрыска дроссельной заслонки. Внедрение порта требует наличия по одной форсунке на каждый цилиндр двигателя.

Знаменитый инжектор GM "Паук"

Раньше системы впрыска через порт подавали топливо на все цилиндры одновременно.Топливо будет собираться на каждом впускном клапане в течение доли секунды до попадания в камеру сгорания. Дженерал Моторс использовали одну такую ​​систему, называемую впрыском в центральный порт, но иногда ее называют Инжектор «паук» из-за его сходства с паукообразным. Топливо было бы распределяется от центральной точки вниз по «ножкам» к тарельчатым клапанам на каждом входе клапан. Тарельчатые клапаны открывались под давлением и выпускали топливо в каждом нога заодно. В конце концов, использование паука было прекращено, потому что кукла клапаны, как правило, забиваются углеродом из побочных продуктов сгорания.

Электронный многоточечный впрыск топлива

Со временем появятся более совершенные системы последовательного впрыска портов. Пришел что бы быть. В этих системах каждый инжектор сигнализирует о срабатывании отдельно от ЭБУ, так что каждый цилиндр получает топливо сразу после открытия впускного клапана. Этот приводит к более эффективному прожигу, чем в старых многопортовых системах.

В этих современных системах топливные форсунки клапаны с электронным управлением, которые распыляют очень мелкий туман топлива в впускные клапаны цилиндров под высоким давлением.Они установлены в двигателе. голова. Форсунки получают топливо либо из топливных магистралей, либо из топливной рампы, которая, в свою очередь получить топливо из топливного насоса. Открытие и закрытие форсунок контролируется модулем управления двигателем (ECU), бортовой компьютер. ЭБУ использует данные из датчик массового расхода воздуха, кислородные датчики и другие датчики для определения момента включения топливных форсунок. Помни это Целью карбюратора было изменение расхода топлива в ответ на воздушный поток.ЭБУ использует информацию от датчика массового расхода воздуха к тому же эффект.

Топливная рейка и форсунки

Прямой впрыск бензина

Самая продвинутая система впрыска топлива на сегодняшний день - прямой впрыск бензина. При непосредственном впрыске газ распыляется не во впускное отверстие, а непосредственно в цилиндр. Газ не смешивается с воздухом, пока не окажется в баллоне, что предотвращает его конденсацию.Это дает еще более прямой ожог. Прямой впрыск уже давно используется в дизельных двигателях, но становится все более популярным. все чаще встречается в бензиновых двигателях. Вы можете вспомнить, что это система который использовался еще на Mercedes 300SL. Пока технология была такой дорого, потому что он был доступен только на том, что было по сути дорожный гоночный автомобиль, сегодня непосредственный впрыск может использоваться во многих газовых двигатели. Современные системы прямого впрыска также имеют электронное управление, в то время как более ранние версии управлялись механически.

Системы прямого впрыска находятся на переднем крае подачи топлива технологии впрыска, но непрямые последовательные системы остаются более распространенными. Один Недостатком прямого впрыска является то, что форсунки должны быть сконструированы таким образом, чтобы выдерживают высокие силы и температуры горения. Поскольку детали нужны чтобы быть более прочными, они обязательно дороже.

Системы впрыска дизельного топлива

Дизельные двигатели работают иначе, чем бензиновые, хотя роль топливных форсунок остается в основном прежней.Дизельные двигатели не используйте дроссель. Вместо этого, когда вы нажимаете на акселератор, перекачивается больше топлива. к форсункам, и это то, что ускоряет двигатель. Дизельные двигатели имеют использовал прямой впрыск с самого начала. Они работают в основном так же, как системы прямого впрыска, описанные выше.

Одна большая разница - это давление топлива в топливной системе. форсунки. Дизельные двигатели не воспламеняют топливо свечами зажигания но из-за сжатия, а дизельное топливо менее летучее (менее легко горит) чем бензин.Поэтому дизельное топливо необходимо распылять еще более мелким туманом. Газовое топливо форсунки обычно имеют давление от 40 до 60 фунтов на квадратный дюйм. (PSI), или от трех до четырех бар (это в три-четыре раза больше атмосферного давление на уровне моря). Дизельные форсунки имеют давление от 14 500 до 29 000 фунтов на квадратный дюйм, или От 1000 до 2000 бар.

Признаки отказа системы впрыска топлива

Медленный запуск и ускорение, остановка двигателя, пропуски зажигания или запах бензина

Проблемы с системой впрыска топлива могут занять много времени. разные формы, но результат обычно один: не хватает топлива цилиндры.Это может снизить мощность и эффективность двигателя. Вы можете обнаружить, что автомобиль изо всех сил пытается завести и разогнаться. Срыв и пропуски зажигания также возможно. Из-за неэффективного сгорания из-за некачественного топлива впрыск, в моторном отсеке может появиться сильный запах бензина после обкатки автомобиля.

Что вызывает выход из строя системы впрыска топлива?

Засоренные топливные форсунки

Сами топливные форсунки должны быть в первую очередь подозреваемыми. когда возникают такие проблемы.У них могут возникнуть проблемы с электричеством или, чаще они могут засориться. Проблемы с электричеством могут остановить инжектор от открытия и закрытия с правильным временем. Сабо будет, очевидно, не позволяйте топливной форсунке распылять топливо должным образом. Может возникнуть засорение от мусора в топливе, что может указывать на проблему в другом месте вашего топлива система. В топливный фильтр, обнаружен в топливном баке или топливной магистрали, является наиболее вероятной причиной и должен проверьте, заменяете ли вы топливную форсунку.

В вашем местном гараже может быть оборудование для проверки топливных форсунок. С помощью этого оборудования можно определить выходное давление по каждому инжектор. Любой инжектор, который отклоняется слишком далеко от надлежащего давления для вашего автомобиль необходимо будет заменить. Поскольку топливные форсунки обычно изнашиваются Со временем вы можете заменить все топливные форсунки в комплекте.

Изношенный топливный насос или утечка в топливных магистралях

Топливные насосы тоже могут выйти из строя.Внутренние механические части могут износиться, или, в случае электрических топливных насосов, электродвигатель может выйти из строя. Плохо. Если топливный насос не перекачивает, газ не попадет в двигатель, и вы вообще не сможет завести машину. Топливные магистрали, топливные баки и наливная горловина могут, конечно, иметь утечки, что приведет к потере газ, который со временем может оказаться дорогостоящим.

Могу ли я отремонтировать систему впрыска топлива самостоятельно?

Вы определенно можете работать над собственной системой впрыска топлива, хотя сложность этого будет варьироваться от одной модели к другой, в зависимости от точной компоновки всех деталей.Поскольку система может быть достаточно сложно, было бы неплохо сфотографировать или нарисовать перед разбирая что-нибудь. Вы можете использовать эти изображения в качестве справки во время переустановка, этап ремонта.

При работе необходимо соблюдать определенные меры безопасности. с топливной системой. Воспламеняемость топлива делает его опасным, а высокое давление в системе представляет собой потенциальную опасность. В принципе, вы не хотите распылять газ везде и особенно не на себе.Прежде чем приступить к работе с топливной системой, особенно перед снятием топливных форсунок, вам нужно измерить давление вне системы. Сделать это можно, отключив питание от топливного насоса. а затем холостой ход двигателя. Это снизит давление в топливных магистралях.

Имея в виду эти советы, вы сможете пройти через ремонт вашей топливной системы без происшествий. Для получения дополнительной информации о конкретных ремонта, вы можете перейти на страницу соответствующей детали или на нашу видео с инструкциями по ремонту автомобилей.

Имея Проблемы с вашей системой впрыска топлива?

Если у вас проблемы с топливом система впрыска, то вы попали в нужное место. 1A Auto - ваш источник на запчасти, чтобы вернуть вашу систему впрыска топлива в рабочее состояние очередной раз! Ниже приведен список общих деталей системы впрыска топлива, которые могут вам понадобиться. заменить.

Сопутствующие товары:

Топливные форсунки

Топливный насос

Блок отправки топлива

Топливный бак

Заливная горловина топливного бака

Газовая крышка

Дверца топливного бака

Топливный фильтр

Топливные магистрали и шланги

Регулятор давления топлива

.

Электронный впрыск топлива, почему это важно и как его быстро создать

Плагин Eclipse для впрыска топлива для SPC5-Studio IDE недавно получил обновления, которые позволяют инженерам быстро создавать приложения электронного впрыска топлива (EFI) для двигателей с одним цилиндр и даже использовать две форсунки с одним цилиндром. Давайте посмотрим, как команды могут создать модуль EFI с микроконтроллером SPC572L64F2 и драйвером L9177A.

Спрос на более низкие выбросы Улучшенный электронный впрыск топлива

Первая система EFI появилась на Volkswagen 1600 в 1967 году, и они по-прежнему доминируют в автомобильной промышленности.Согласно исследованию JP Morgan, проведенному в 2018 году, поскольку доля автомобилей с двигателями внутреннего сгорания сократится до 41% мирового рынка в 2025 году по сравнению с 98% в 2015 году, гибридные автомобили также должны составлять 41%, а электромобили - 18%. %. Традиционные двигатели никуда не денутся, поэтому регулирующие органы продолжают ожидать от них большей эффективности . Например, Euro 6 / VI, последний европейский стандарт на выбросы, ограничивает, помимо прочего, выброс оксида азота (NOx) дизельными автомобилями до 80 мг / км, тогда как бензиновые двигатели не могут превышать 60 мг / км. км.Более того, «17 из 20 членов [G-20] выбрали путь европейского регулирования для контроля выбросов транспортных средств», согласно данным Международного совета по чистому транспорту.

Электронные системы впрыска топлива - отличный способ соответствовать этим стандартам и значительно повысить производительность. Впрыск топлива в топливный клапан - необходимый процесс в любом двигателе внутреннего сгорания. Однако ввести его в оптимальный момент и в оптимальном количестве далеко не так просто. .В автомобиле скорость, нагрузка, высота, температура наружного воздуха и то, запускает ли водитель двигатель или использует круиз-контроль, существенно влияют на время впрыска и количество топлива. Более того, EFI теперь все чаще встречаются за пределами автомобильной сферы. Потребители требуют гораздо лучших характеристик своих двухколесных транспортных средств, придорожного оборудования, газонокосилок, лодок и даже генераторов двигателей внутреннего сгорания. Таким образом, EFI необходимы, и создание их для небольших двигателей может быть несложным благодаря двум компонентам ST и нашей IDE.

SPC572L64F2, GTM для EFI… Боже мой!

SPC572L-DISP

SPC572L64F2 - отличный микроконтроллер для электронных систем впрыска топлива из-за наличия универсального модуля таймера (GTM101) . Этот IP-адрес может разгрузить основной ЦП для выполнения нескольких задач, что значительно оптимизирует производительность. Например, он может получать информацию от маховика, таким образом определяя положение двигателя, и использовать свой аппаратный блок для увеличения разрешения сигнала перед отправкой сигналов впрыска и зажигания.В нашем предыдущем поколении MCU для приложений EFI главное ядро ​​должно было обрабатывать сигнал от маховика, что отнимало ресурсы для других вычислений. Теперь, когда GTM позаботится об этом, MCU может использовать свое ядро ​​для других процессов, тем самым оптимизируя производительность. Разработчики также могут использовать GTM для вычисления мгновенной скорости или запустить систему управления батареями с помощью определенных функций.

SPC572L64F2 является частью нашего второго поколения микроконтроллеров для автомобильных трансмиссий и самым маленьким устройством, которое работает в двигателях с числом цилиндров до четырех .Он обеспечивает соответствие ISO26262 ASIL-A благодаря функциям безопасности, таким как мониторинг часов и сторожевые устройства, обеспечивающие исключительную надежность. Он также включает в себя блок защиты системной памяти, чтобы гарантировать целостность информации, передаваемой между ядром и контроллерами памяти или периферийными устройствами. Его одно ядро ​​e200z2, 64 КБ SRAM и 1568 КБ флэш-памяти делают его особенно интересным компонентом для небольших двигателей с одним или двумя цилиндрами. Разработчики, которые хотят начать экспериментировать с ним, могут получить SPC572L-DISP, который позволит им использовать периферийные устройства MCU, такие как CAN, UART, LIN или FlexRay, а также воспользоваться двумя портами JTAG для облегчения операций отладки и программирования.Плата полностью поддерживается SPC5-Studio.

L9177A, модуль управления двигателем с 2-канальными драйверами форсунок

Еще одним важным аспектом любой системы EFI является управление двигателем. L9177A - это мощное решение, которое включает в себя драйверы двухканальных форсунок по параллельным линиям или через последовательный интерфейс SPI, что позволяет двигателям с двумя форсунками на один цилиндр или двумя цилиндрами с одним инжектором на каждый. Драйвер инжектора, нагреватель датчика O2 и два драйвера реле используют последовательный периферийный интерфейс (SPI) для облегчения разработки.Инженеры могут даже начать свои разработки на оценочной плате EVAL-L9177A, которая также использует SPI для чтения полной диагностической информации . Дополнительно плата защищает все каналы от короткого замыкания, перегрузки по току и перегрева. Команды, которые хотят попробовать EVAL-L9177A, подключают его к разъему на плате SPC56M-Discovery, на которой используется микроконтроллер SPC563M64L7. Однако, как только разработчики ознакомятся с L9177A и SPC572L64F2, будет довольно просто переключиться на индивидуальный дизайн, включающий оба компонента.

SPC5-Studio IDE и SPC5-L9177A-K02 Эталонный дизайн, обеспечение доступности систем EFI

Эталонный дизайн SPC5-L9177A-K02

Отчасти переход от одного MCU SPC5 к другому относительно прост в том, что мы также предоставить библиотеки для нашей IDE SPC5-Studio, которые значительно облегчают разработку . Независимо от того, разрабатывают ли команды адаптивное переднее освещение или электронную систему впрыска топлива, у нас есть фреймворки, которые сильно помогают разработчикам программного обеспечения.Например, IDE включает библиотеки для универсального модуля таймера SPC572L64F2 для более быстрой оптимизации процессов впрыска или зажигания, среди прочего. Кроме того, команды также могут запросить демонстрационное приложение EFI у ST, чтобы ускорить этап создания прототипа. Это поможет им увидеть, как мы реализовали определенные функции, а также будет действовать как конфигуратор для быстрого определения количества форсунок на цилиндр, маховика и, в конечном итоге, получить функциональное приложение.

Мы также работали над эталонным дизайном с Arrow, SPC5-L9177A-K02, который включает в себя SPC572L64F2 и L9177A .Программное обеспечение, которое поставляется с ним, поможет создать базовую систему управления впрыском топлива для одного инжектора и одного цилиндра, и оно уже помогает соответствовать стандартам Euro 4 / IV, Euro 5 / V, Bharat Stage VI, China V и China VI, выбросам стандарты. Однако сама плата открывает пользователям всю мощь своих компонентов, а это означает, что она позволит программистам выйти за рамки демонстрационного приложения и создавать приложения, содержащие до двух цилиндров и до двух инжекторов. Таким образом, это отличное решение для инженеров, которые хотят сосредоточиться на приложениях EFI и стремятся сократить время выхода на рынок.

Маленькая система EFI с SPC572L64F2 и L9177A

Что дальше?

Связанные

.

Как работают системы впрыска топлива

Алгоритмы управления двигателем достаточно сложные. Программное обеспечение должно позволять автомобилю соответствовать требованиям по выбросам на 100 000 миль, соответствовать требованиям EPA по экономии топлива и защищать двигатели от неправильного использования. И есть множество других требований, которым нужно соответствовать.

Блок управления двигателем использует формулу и большое количество справочных таблиц для определения ширины импульса для заданных условий эксплуатации. Уравнение будет представлять собой серию множества факторов, умноженных друг на друга.Многие из этих факторов будут взяты из справочных таблиц. Мы рассмотрим упрощенный расчет длительности импульса топливной форсунки . В этом примере в нашем уравнении будет только три фактора, тогда как в реальной системе управления их может быть сто или больше.

Ширина импульса = (основная ширина импульса) x (коэффициент A) x (коэффициент B)


Для расчета ширины импульса ЭБУ сначала ищет базовую ширину импульса в справочной таблице. Базовая ширина импульса является функцией частоты вращения двигателя (об / мин) и нагрузки (которая может быть рассчитана по абсолютному давлению в коллекторе).Допустим, частота вращения двигателя составляет 2000 об / мин, а нагрузка равна 4. Мы находим число на пересечении 2000 и 4, что составляет 8 миллисекунд.

об / мин Нагрузка
1 2 3 4 5
1 000 1 2 3 4 5
2 000 2 4 6 8 10
3 000 3 6 9 12 15
4 000 4 8 12 16 20


В следующих примерах A и B - это параметры, поступающие от датчиков.Допустим, A - температура охлаждающей жидкости, а B - уровень кислорода. Если температура охлаждающей жидкости равна 100, а уровень кислорода равен 3, справочные таблицы говорят нам, что коэффициент A = 0,8 и коэффициент B = 1,0.

А Фактор A
В Фактор B
0 1.2
0 1.0
25 1.1
1 1.0
50 1.0
2 1.0
75 0,9
3 1.0
100 0.8
4 0,75


Итак, поскольку мы знаем, что ширина основного импульса является функцией нагрузки и оборотов в минуту, и что ширина импульса = (ширина основного импульса) x (коэффициент A) x (коэффициент B) , общая ширина импульса в нашем примере равно:

8 x 0,8 x 1,0 = 6,4 миллисекунды


Из этого примера вы можете увидеть, как система управления выполняет настройки. Если параметр B представляет собой уровень кислорода в выхлопе, справочная таблица для B - это точка, в которой (по мнению разработчиков двигателей) слишком много кислорода в выхлопе; и, соответственно, ECU сокращает расход топлива.

Реальные системы управления могут иметь более 100 параметров, каждый со своей таблицей поиска. Некоторые параметры даже меняются со временем, чтобы компенсировать изменения в характеристиках компонентов двигателя, таких как каталитический нейтрализатор. И, в зависимости от оборотов двигателя, ЭБУ может выполнять эти вычисления более ста раз в секунду.

Performance Chips
Это подводит нас к обсуждению высокопроизводительных микросхем. Теперь, когда мы немного понимаем, как работают алгоритмы управления в ECU, мы можем понять, что делают производители микросхем производительности, чтобы получить больше мощности от двигателя.

Чипы Performance производятся компаниями вторичного рынка и используются для увеличения мощности двигателя. В ЭБУ есть микросхема, которая содержит все таблицы поиска; чип производительности заменяет этот чип. Таблицы в чипе производительности будут содержать значения, которые приводят к увеличению расхода топлива в определенных условиях движения. Например, они могут подавать больше топлива при полном открытии дроссельной заслонки на каждой скорости двигателя. Они также могут изменить время зажигания (для этого тоже есть справочные таблицы). Поскольку производители микросхем производительности не так озабочены такими проблемами, как надежность, пробег и контроль выбросов, как производители автомобилей, они используют более агрессивные настройки в топливных картах своих микросхем производительности.

Для получения дополнительной информации о системах впрыска топлива и других автомобильных темах перейдите по ссылкам на следующей странице.

Объявление

.

Карбюратор против впрыска топлива | Какая разница?

С момента создания двигателя внутреннего сгорания всегда существовала необходимость найти эффективный способ подачи воздуха и топлива в камеру сгорания. Вы знали? Первые годы в двигателе внутреннего сгорания использовалась простая система слива топлива, которая, хотя и выполняла свою работу, приводила к потере топлива и низкому расходу топлива.

Карбюратор или впрыск топлива - это два основных типа системы подачи топлива, обычно используемые в автомобилях, мотоциклах, самолетах и ​​т. Д.У автолюбителей всегда есть противоречивые мнения о плюсах и минусах использования карбюратора и впрыска топлива. Некоторые говорят, что карбюратор - это простой и эффективный метод впрыска топлива, в то время как другие ручаются за полезные характеристики системы впрыска топлива. Мы позволим вам решить.

Как работает карбюратор?

В своей базовой форме карбюратор использует трубку Вентури , которая сужается в секции, что снижает давление воздуха и создает вакуум. Это то, что называется эффектом Вентури в вакууме .
Этот вакуум втягивает топливо в карбюратор по сравнению с впрыском топлива, где соотношение регулируется с помощью двух клапанов; дроссель и дроссель. Дроссель уменьшает количество воздуха и увеличивает поток топлива, заставляя двигатель работать обедненной смеси ( очень полезная функция во время зимы или холодного запуска). Второй клапан, называемый дроссельной заслонкой (он же дроссельная заслонка), регулирует поток топливовоздушной смеси к двигателю. Чем больше открыта дроссельная заслонка, тем больше вводится воздуха-топлива, тем быстрее автомобиль разгоняется.В автомобиле дроссельная заслонка соединена кабелем с педалью акселератора.

Стехиометрическая смесь : Отношение массы воздуха к массе топлива, также известное как идеальная воздушно-топливная смесь, в которой кислород и топливо сгорают с максимальной эффективностью.

Топливо подается через маленькие форсунки , которые точно откалиброваны для достижения максимальной эффективности и производительности. Под корпусом карбюратора находится камера с плавающей подачей , которая является своего рода вторичным топливным баком, который подает топливо в двигатель.Когда уровень топлива падает до низкого, поплавок запускает клапан для наполнения камеры.

Карбюратор: краткая история

Первый карбюратор был изобретен Samuel Moey в 1826 году. Хотя первым, кто запатентовал современный карбюратор, был Карл Бенц , пионер автомобилестроения, основавший Mercedes Benz. Самый популярный вид; Поплавковый карбюратор был разработан Wilhelm Maybach и Gottlieb Daimler в 1885 году.Карбюраторы были наиболее распространенным способом подачи топлива до появления системы впрыска топлива в конце 1990-х годов.

Как работает впрыск топлива?

Электронный впрыск топлива состоит из набора топливных форсунок, датчика кислорода и электрического топливного насоса с регулятором давления. Компьютер контролирует, сколько топлива должно быть доставлено в цилиндры, благодаря чему автомобили с системой впрыска топлива работают лучше и возвращают лучший расход топлива.
Хотя они служат для одной и той же цели, система впрыска топлива работает совсем иначе, чем карбюратор.Он использует насос для подачи топлива в двигатель. Здесь нет смешивания воздуха и топлива или достижения оптимального соотношения воздух-топливо, поскольку воздух и топливо, поступающие в систему, регулируются электронным способом с помощью бортового компьютера, который хранит «карту» оптимальных настроек. На каждом из цилиндров имеется топливная форсунка , распыляющая топливо во впускной коллектор. Топливо, поступающее в двигатель, распыляется и испаряется для лучшего зажигания.

Впрыск топлива: краткая история

Первую систему впрыска топлива разработал Герберт Акройд Стюарт. Он использовал рывковый насос , который нагнетал топливо в конце. Позднее его изобретение было реализовано в дизельных двигателях Bosch и Cummins. Впрыск топлива всегда использовался в дизельных двигателях изначально и был стандартной установкой на всех дизельных автомобилях к середине 1920-х годов.

Но именно двигатель Хассельмана, изобретенный Йонасом Хассельманом в 1925 году, стал первым современным впрыском топлива, который нашел применение в бензиновых двигателях.

Карбюратор против впрыска топлива

Универсальность

Карбюратор был снят с производства в автомобильной промышленности к 1990-м годам, когда произошел впрыск топлива, который получил все большее распространение.У карбюратора было много неудач, для начала карбюратор нельзя использовать в дизельных автомобилях. Впрыск топлива, с другой стороны, доступен как для дизельных, так и для бензиновых автомобилей в электронном и механическом вариантах.

Производительность

Система впрыска топлива с электронным управлением впуском топлива может постоянно изменять подачу топлива в цилиндры, обеспечивая лучшую производительность. Карбюратор не может измерить правильное соотношение воздух-топливо и борется с изменением давления воздуха и температуры топлива.

Экономия топлива

Система впрыска топлива точно подает топливо в нужном количестве и может настраивать его в соответствии с несколькими параметрами, что приводит к меньшим расходам топлива и лучшей топливной эффективности. Карбюратор не может регулировать соотношение топлива в соответствии с условиями двигателя.

Техническое обслуживание

Единственный параметр, при котором карбюратор превосходит впрыск топлива. Карбюраторы довольно просто чистить и восстанавливать. Ремонт системы впрыска топлива требует профессионального вмешательства или даже дорогостоящей замены.

.

Смотрите также