Система питания машины недостатки


Система питания двигателя в современных автомобилях

Система питания автомобиля используется для подготовки топливной смеси. Она состоит из двух элементов: топлива и воздуха. Система питания двигателя выполняет сразу несколько задач: очищение элементов смеси, получение смеси и ее подача к элементам двигателя. В зависимости от используемой системы питания автомобиля различается состав горючей смеси.

Типы систем питания

Различают следующие виды систем питания двигателя, отличающиеся местом образования смеси:

  1. внутри двигательных цилиндров;
  2. вне двигательных цилиндров.

Топливная система автомобиля при образовании смеси за пределами цилиндра разделяется на:

  • топливную систему с карбюратором
  • с использованием одной форсунки (с моно впрыском)
  • инжекторную

Назначение и состав топливной смеси

Для бесперебойной работы двигателя автомобиля необходима определенная топливная смесь. Она состоит из воздуха и топлива, смешанных по определенной пропорции. Каждая из этих смесей характеризуется количеством воздуха, приходящегося на единицу топлива (бензина).

Для обогащенной смеси характерно наличие 13-15 частей воздуха, приходящихся на часть топлива. Такая смесь подается при средних нагрузках.

Богатая смесь содержит менее 13 частей воздуха. Применяется при больших нагрузках. Наблюдается увеличенный расход бензина.

У нормальной смеси характерно наличие 15 частей воздуха на часть топлива.
Обедненная смесь содержит 15-17 частей воздуха и применяется при средних нагрузках. Обеспечивается экономный расход топлива. Бедная смесь содержит более 17 частей воздуха.

Общее устройство системы питания

В системе питания двигателя имеются следующие основные части:

  • бак для топлива. Служит для хранения топлива, содержит насос для закачки топлива и иногда фильтр. Имеет компактные размеры
  • топливопровод. Это устройство обеспечивает поступление топлива в специальное смесеобразующее устройство. Состоит из различных шлангов и трубок
  • устройство смесеобразования. Предназначено для получения топливной смеси и подачи в двигатель. Такими устройствами могут быть инжекторная система, моновпрыск, карбюратор
  • блок управления (для инжекторов). Состоит из электронного блока, управляющего работой системы смешения и сигнализирующего о возникающих сбоях в работе
  • топливный насос. Необходим для поступления топлива в топливопровод
  • фильтры для очистки. Необходимы для получения чистых составляющих смеси

Карбюраторная система подачи топлива

Эта система отличительна тем, что смесеобразование происходит в специальном устройстве – карбюраторе. Из него смесь попадает в нужной концентрации в двигатель. Устройство системы питания двигателя содержит такие элементы: бак для топлива, очищающие фильтры для топлива, насос, фильтр для воздуха, два трубопровода: впускной и выпускной, карбюратор.

Схема системы питания двигателя реализуется так. В баке находится топливо, которое будет использоваться для подачи в двигатель внутреннего сгорания. Оно попадает в карбюратор через топливопровод. Процесс подачи может быть реализован с помощью насоса или естественным способом с помощью самотека.

Чтобы топливная подача осуществлялась в камеру карбюратора самотеком, то его (карбюратор) необходимо размещать ниже топливного бака. Такую схему не всегда можно реализовать в автомобиле. А вот использование насоса дает возможность не зависеть от положения бака относительно карбюратора.

Топливный фильтр очищает топливо. Благодаря ему из топлива удаляются механические частички и вода. Воздух попадает в камеру карбюратора через специальный фильтр для воздуха, очищающий его от частиц пыли. В камере происходит смешение двух очищенных составляющих смеси. Попадая в карбюратор, топливо поступает в поплавковую камеру. А после направляется в камеру смесеобразования, где соединяется с воздухом. Через дроссельную заслонку смесь поступает во впускной коллектор. Отсюда она направляется к цилиндрам.

После отработки смеси газы из цилиндров удаляются с помощью выпускного коллектора. Далее из коллектора они направляются в глушитель, который подавляет их шум. Из него они поступают в атмосферу.

Подробно об инжекторной системе

В конце прошлого столетия карбюраторные системы питания стали интенсивно заменяться новыми системами, работающими на инжекторах. И не просто так. Такое устройство системы питания двигателя обладало рядом преимуществ: меньшая зависимость от свойств окружающей среды, экономная и надежная работа, выхлопы менее токсичны. Но у них есть недостаток – это высокая чувствительность к качеству бензина. Если этого не соблюдать, то могут возникнуть неполадки в работе некоторых элементов системы.

«Инжектор» переводится с английского, как форсунка. Одноточечная (моновпрысковая) схема системы питания двигателя выглядит так: топливо подается на форсунку. Электронный блок подает на нее сигналы, и форсунка открывается в нужный момент. Топливо направляется в камеру смесеобразования. Далее все происходит как в карбюраторной системе: образуется смесь. Затем она проходит впускной клапан и попадает в цилиндры двигателя.

Устройство системы питания двигателя, организованное с помощью инжекторов, следующее. Эта система характеризуется наличием нескольких форсунок. Данные устройства получают сигналы от специального электронного блока и открываются. Все эти форсунки соединены друг с другом с помощью топливопровода. В нем всегда имеется в наличии топливо. Лишнее топливо удаляется по обратному топливопроводу назад в бак.

Электронасос подает топливо в рампу, где образуется избыточное давление. Блок управления направляет сигнал на форсунки, и, они открываются. Топливо впрыскивается во впускной коллектор. Воздух, проходя дроссельный узел, попадает туда же. Полученная смесь поступает в двигатель. Количество необходимой смеси регулируется с помощью открытия дроссельной заслонки. Как только такт впрыска заканчивается, форсунки снова закрываются, прекращается подача топлива.

Электронный блок является своеобразным «мозговым» элементом системы. Этот сложный механизм обрабатывает поступающие на него сигналы от различных датчиков. Так происходит управление всеми устройствами топливной системы. Такая схема системы питания двигателя дает возможность водителю во время узнать о сбоях в работе, так как блок управления сигнализирует о них с помощью специальной лампы и кодов ошибки. Данные коды позволяют специалистам быстро выявить неполадки. Для этого им достаточно подключить внешнее диагностическое устройство, которое сможет распознать возникшие проблемы и назвать их.

Также на эту тему вы можете почитать:

Поделитесь в социальных сетях

Alex S 11 октября, 2013

Опубликовано в: Полезные советы и устройство авто

Метки: Как устроен автомобиль

Устройство системы питания автомобиля

3. Топливный насос (служит для подачи топлива в двигатель). Топливные насосы служат для подачи бензина в цилиндры бензинового двигателя или дизельного топлива дизеля под определенным давлением и в определенный момент точно дозированных порций топлива, соответствующих нагрузке при данном режиме работы двигателя. Топливные насосы различаются по способу впрыска непосредственного действия и с аккумуляторным впрыском. В инжекторной топливной системе применяются электробензонасосы, которые размещаются в модуле топливного бака, вместе с датчиком указания уровня топлива, фильтром и завихрителем.

3.1 Топливный насос дизеля - в системах топливоподачи дизелей применяют поршневые насосы, которые служат для подачи топлива через фильтры к топливному насосу высокого давления (ТНВД).

3.2 Топливный насос высокого давления - (18—20 МПа) подает топливо через форсунки в камеру сгорания в строго определенные моменты и в определенном количестве в зависимости от режима работы двигателя. На автомобильных двигателях применяют ТНВД золотникового типа с постоянным ходом плунжера и регулировкой окончания подачи топлива.

3.3 ТНВД КАМАЗ - зарекомендовал себя, как насос высокого давления отличного качества. Продажа ТНВД КАМАЗ осуществляется профессионалами и представлена в широком ассортименте.

3.4 Топливный насос с электроприводом - служит для подачи топлива, поддерживает оптимальное давление в системе и обеспечивает правильный впрыск топлива при разных режимах работы.

4. Топливный фильтр (служит для очистки топлива).

4.1Фильтр тонкой очистки топлива ямз

5. Воздушный фильтр (очищает воздух, который используется для приготовления горючей смеси).

5.1Воздухоочиститель

6. Карбюратор (используется для приготовления горючей смеси).

6.1 Простейший карбюратор

6.2 Вспомогательные устройства карбюратора

6.3 Управление карбюратором

6.4 Устройство карбюратора

6.5 Поплавковая камера карбюратора

6.6 Системы карбюратора

6.7 Карбюраторный двигатель

7. Инжектор

Карбюратор или инжектор? | АвтобурУм

19.02.2018, Просмотров: 2435

Вопрос преимущества инжектора над карбюратором и наоборот, стоит при выборе отечественного автомобиля, либо иномарки 80-х и 90-х годов выпуска. Зачастую будущий автолюбитель сталкивается с простым, но в тоже время трудным выбором между двумя разными типами системы питания. Давайте разберемся.

Отличие карбюраторной системы питания от впрыска

У этих двух типов системы питания есть одно сходство – своевременное приготовление и подача эталонной топливно-воздушной массы в цилиндры двигателя. Сам принцип действия совершенно разный.

Карбюратор работает следующим образом: внутри карбюратора приготавливается смесь топлива и воздуха, масса которых определена пропускной способностью жиклеров и это количество зависит лишь от оборотов коленвала. Посредством разряжения готовая смесь попадает в цилиндр, в котором происходит такт впуска, где поршень стремится в НМТ, создавая разряжение. Такая система называется внешним смесеобразованием, то есть – вне цилиндра.

Двигатель с инжекторным мотором работает иначе: благодаря синхронизированной работе датчиков расхода воздуха или давления во впускном коллекторе, датчику кислорода, датчику положения коленчатого вала и температуры двигателя, блок управления двигателя в момент считывает пропорцию топливно-воздушной смеси, а так же момент ее подачи непосредственно в цилиндр или коллектор. Такое смесеобразование называется внутренним, так как смешивание воздуха и топлива образуется в самом цилиндре. Это и отличает два типа системы питания.

Преимущества и недостатки карбюратора

Первое, что нужно отметить – простота в ремонте, так как при неисправности данного агрегата его можно самостоятельно снять и починить. Благодаря тому, что карбюратор полностью механический, это позволяет самостоятельно настроить любые параметры под свои потребности, меняя жиклеры с разной пропускной способностью, выставляя поплавок уровня топлива, момент открытия второй заслонки и так далее. Так же отмечается дешевизна комплектующих и наличие во всех магазинах автозапчастей на отечественные марки. Карбюраторному агрегату нет разницы, какое топливо проходит через него, то есть с любым октановым числом. В 2005 году в России все выпускаемые автомобили ВАЗ и ГАЗ перевели на инжектор, так как в этом году транспортные средства должны были соблюдать нормы выхлопа по Евро-3.

О достоинствах:

  • низкая цена и стоимость обслуживания, возможность приобрести хороший б/у агрегат;
  • простая конструкция позволяет обслуживать и ремонтировать без специальных навыков;
  • легко диагностируется;
  • «переваривание» любого бензина;

О недостатках:

  • для полноценной и правильной работы следует регулировать вместе с зажиганием на специальном стенде, опираясь на тарированные данные по подбору жиклеров;
  • в поплавковой камере часто кипит бензин;
  • нестабильность при эксплуатации;
  • постоянные мелкие проблемы;
  • частая регулировка холостого хода и чистка жиклеров;
  • некачественные комплектующие;0
  • повышенный расход топлива при малейшей неисправности.

Преимущества и недостатки электронного впрыска

Благодаря инжекторной системе питания двигатель раскрывает весь свой потенциал, так как его работа полностью контролируется электроникой. Так же впрыск топлива отвечает требованиям норм выхлопа. Однако, большая часть автолюбителей, при выборе электронной системы питания, руководствуются тем, что такой силовой агрегат имеет высокий КПД, надежную работу во всем диапазоне оборотов коленчатого вала, экономию и возможность прошивки блока управления двигателем под разные стили езды, позволяя, не трогая механическую часть понизить расход топлива, либо повысить мощность.

У инжектора перед карбюратором весомые преимущества, а именно:

  • надежность и низкая частота поломок;
  • легкий набор оборотов;
  • возможность самодиагностики;
  • быстрая отдача на педаль газа;
  • экономичность;
  • возможность выбора режима работы двигателя;
  • возможность увеличения мощности без повышения расхода
  • бензина;
  • предупреждение о неисправности «Checkengine».

Есть и недостатки:

  • дорогой ремонт;
  • электроника зачастую не подлежит ремонтопригодности;
  • уязвимость к качеству топлива;
  • высокая стоимость комплектующих деталей.

На чем остановить выбор

Несмотря на то, что инжектор дороже в обслуживании и более прихотлив к качеству бензина, его надежность и возможность широкой настройки параметров опережает на сотни шагов вперед карбюратор. В конце концов, за определенный пробег два типа мотора могут выйти одинаково в цене, только карбюратору нужно будет чаще уделять внимание, а инжектор сделать один раз и надолго.

Выбирать карбюраторный двигатель можно в случае, если есть желание научиться ремонтировать двигатель, начиная с простого агрегата, а так же езда по сельской местности, где не всегда можно заправиться качественным топливом. Это касается исключительно отечественных машин. Не рекомендуется покупать иномарку с данной системой питания, так как в 99% случаев, автомобиль прошел через руки гаражных «кулибинов», которые в силу отсутствия знаний могли вместо ремонта только сделать хуже. Если же речь идет об автомобилях Audiили VW, которые уже переведены на отечественный карбюратор «Solex», тогда стоит присмотреться к данным моделям.

Инжекторный мотор это современные технологии и надежность. Единственным минусом может показаться то, что из-за неисправности одного из датчиков двигатель может и не запуститься. Зимой вы редко окажетесь в ситуации отказа в запуске такого двигателя. Инжектор также лучше поддается тюнингу, так как имеет широкий диапазон настроек, которые синхронизируются в одно целое, и выдает ожидаемую мощность. К примеру, добиться больше мощности от карбюратора можно только лишь при помощи подачи большего количеств топлива.

Что выбрать? Этот вопрос индивидуален для каждого. Выбор следует делать на основании своих потребностей, познаний технической части и финансовых возможностей.

Система распределенного впрыска топлива: принцип действия, достоинства и недостатки

Система распределенного впрыска – это современная и наиболее прогрессивная многоточечная система топливной подачи, применяемая на бензиновых двигателях. Особенностью подобной системы является то, что каждый цилиндр ДВС оснащен собственной форсункой, через которую происходит дозированная подача топлива.

Двигатели, оснащенные системой распределенной подачей топлива, имеют более высокие показатели экономичного расхода ТС и низкий уровень токсичности отработанных газов.

Виды систем распределенного впрыска

Современные системы распределенного типа подачи топлива разделены на несколько видов:

  • По принципу работы – системы импульсной и непрерывной подачи ТС;
  • По способу управления – системы на механическом и электронном типе управления;
  • По времени открытия топливных форсунок – системы с попарно-параллельным впрыском (при подаче топлива попарно), одновременным впрыском (при одновременной подаче топлива во все форсунки), фазированным впрыском (при индивидуальной подаче топлива для каждой форсунки), прямым впрыском (подача топлива осуществляется в камеру сгорания цилиндра, минуя впускной коллектор).

Наиболее распространенными системами распределенной подачи ТС являются системы KE-Jetronic, K-Jetronic и L-Jetronic, разработанные компанией Bosch.

Система K-Jetronic относится к механическим топливным системам с непрерывной подачей ТС.

Система типа KE-Jetronic одна из разновидностей механической топливной системы непрерывного типа с электронным способом управления.

Система L-Jetronic представляет собой систему импульсной подачи топлива с электронным типом управления.

Система распределенной подачи ТС состоит из следующих подсистем и компонентов:

  • систем подачи и очистки топлива и воздуха;
  • системы сжигания бензиновых испарений;
  • системы выпуска и сжигания отработанных газов;
  • электронного блока управления с входными датчиками

Как работает система распределенной подачи ТС

Работа основных элементов системы – форсунок напрямую зависит от центра управления – управляющего блока, состоящего из бортового компьютера. Основной функцией управляющего блока является прием электрических сигналов, поступающих от входных датчиков, с последующей обработкой и преобразованием в управляющие сигналы, которые передаются на электромагнитные клапаны топливных форсунок и механизмы исполнения.

Помимо основных функций, блок управления выполняет и дополнительные задачи – проводит своевременную диагностику топливной системы на предмет выявления любых неполадок или поломок в ее работе.

При обнаружении неполадок блок управления сообщает о них водителю через контрольные лампы на приборной панели - Check engine, Check. Информация о более сложных поломках заносится в блок памяти для дальнейшего использования при повторной диагностике.

Расчет нужного количества топлива, происходит на основании данных полученных от температурных датчиков (температуры двигателя и поступающего воздуха), расхода воздуха, подсчета скорости вращения коленвала, угла открытия заслонки и т.д.

Произведя необходимые расчеты на основании полученных данных, бортовой компьютер посылает сигналы в виде электрических импульсов на форсунки для их открытия. Принимая сигналы, форсунки открывают клапаны, через которые топливо под высоким давлением поступает в топливный коллектор.

Преимущества и недостатки системы распределенной подачи ТС

Подобный тип системы топливной подачи имеет некоторые преимущества и недостатки. Наиболее значимые из них мы отдельно выделим.

Преимущества системы:

  • долговечность и надежность;
  • высокая экономичность использования топлива;
  • низкая токсичность отработанных газов бензиновых ДВС;
  • низкая вероятность появления сбоев в работе системы в условиях экстремального вождения (например, при преодолении крутых спусков и подъемов, при езде в дождь или гололед).

Недостатки системы:

  • сложная и дорогостоящая конструкция, оснащенная чувствительной системой электронного управления;
  • высокая стоимость ремонта и замены основных электронных элементов системы;
  • особенность конструкции требует проведения ремонтных и профилактических работ только высококвалифицированными специалистами.

Инжектор или карбюратор — достоинства и недостатки

Вопрос сравнения в ракурсе «что лучше» между инжекторной и карбюраторной подачей топлива уже давно не стоит. Машин, которые оснащены карбюратором, с каждым днем становится меньше, а новые уже и вовсе не выпускают.

Начинающие автомобилисты не разбираются в устройстве автомобильного двигателя, системе подачи топлива и т. д. Термины «карбюратор» и «инжектор» ничего им не говорят. Неопытные автомобилисты не видят разницы между их предназначением. Перед теми, кто покупает новое авто, вопрос что лучше: карбюратор или инжектор, уже не стоит. Им знать о карбюраторе ничего и не нужно, так как он давно снят с производства и не проходит экологический стандарт Евро-3.

С этим и связан массовый переход автопроизводителей на автомобили с инжекторной системой питания. Требования, предъявляемые к очистке выхлопных газов, становятся выше, и карбюратор не может обеспечить их выполнение.

Но не только в этом причина отказа от карбюраторов. По сравнению с инжектором у него много недостатков и мало достоинств.

Содержание статьи

Чем отличается инжектор от карбюратора

Принцип, по которому карбюратор подает смесь бензина с кислородом в камеры сгорания двигателя, – разница в давлении. Принудительного впрыска здесь нет, и топливоподача происходит с помощью всасывания топлива. Значит, часть мощности силового агрегата тратится на этот процесс.

Количество воздуха в топливной смеси автоматически не регулируется. Карбюратор настраивается механическим путем еще до поездки, и эта настройка универсальная. Но в этом есть некоторые недостатки. Двигатель в определенные моменты способен получать от карбюратора больше топлива, чем он может переработать. В итоге часть бензина не сгорает, а выходит вместе с выхлопными газами, что наносит вред окружающей среде и не экономит топливо.

В случае же с инжектором происходит принудительная подача топлива в камеры сгорания при помощи форсунок, а количество бензина регулируется электроникой, которая и отвечает за приготовление топливовоздушной смеси.

Выхлоп инжекторного автомобиля менее токсичен, не так вреден для окружающей среды, как карбюраторный, потому что в нем меньше несгоревшего бензина.

В этом и заключаются отличия системы питания карбюраторного двигателя от инжекторного. Теперь перейдем к вопросу «что лучше» не для экологии, а для водителя и автомобиля.

 Плюсы двигателя с инжекторной топливоподачей

  1. Если допустить, что остальные устройства в двух автомобилях идентичны и различны только способы подачи топлива, то большая мощность остается у инжекторного мотора. Разница в лошадиных силах между карбюраторным и инжекторным ДВС может составлять 10%. Эти отличия достигаются за счет другого впускного коллектора, точно выставляемого в каждый момент угла опережения зажигания, и другого способа подачи топлива.
  2. Инжекторные моторы, по сравнению с карбюраторными аналогами, отличаются топливной экономичностью за счет точной дозированной подачи бензина. При таком способе 100% бензина сгорает в камерах двигателя, превращая тепловую энергию в механическую.
  3. Основная причина перехода всех мировых автопроизводителей на инжекторную систему –  экологичность. Карбюраторные выхлопы более токсичны.
  4. В морозную погоду инжекторный двигатель не нуждается в дополнительном прогреве перед запуском.
  5. Инжекторы намного надежнее карбюраторов, их выход из строя встречается реже, по сравнению с неисправностями карбюраторов.
  6. Инжекторные двигатели не имеют катушку-трамблер. Эта деталь часто выходит из строя на машинах с карбюраторной топливоподачей.

Минусы инжекторов

  1. Хоть инжектор надежен, но он выходит из строя. А для его диагностики и последующего ремонта необходимо специализированное оборудование.  Ремонт в условиях «гаража» невозможен, для этого нужен опыт и квалификация. Ремонт этого устройства на СТО, как и обслуживание с профилактикой – работа дорогостоящая.
  2. Инжектор требует только качественного топлива. Если топливо содержит некоторое количество механических примесей, то нормальная его работа затруднена. Он быстро засорится и выйдет из строя. А чистка и ремонт стоят недешево.
  3. Следующий недостаток касается двигателей, на которые вместо карбюратора установили инжектор. В результате доработки повысится количество сгораемого в двигателе топлива, что повышает его рабочую температуру. Это чревато возможным перегревом ДВС со всеми вытекающими последствиями.

Плюсы карбюраторных систем

  1. В плане обслуживания карбюраторы считаются простыми устройствами. Для их ремонта не нужно специализированное оборудование и инструмент. Все необходимое для этого найдёте в гараже.
  2. Стоимость деталей – невысока. В случае невозможности ремонта можно купить новый карбюратор. По сравнению с инжектором его стоимость низкая.
  3. Карбюратор не требует высокого качества топлива. Он нормально работает на бензине с низким октановым числом. Небольшое количество механических примесей несильно затруднит его работу. Максимум – забьются жиклеры.

Минусы карбюраторов

Недостатков у карбюраторных систем намного больше, чем достоинств, и поэтому существует тенденция на их замещение инжекторами.

  1. Автомобиль, двигатель которого оснащен карбюратором, потребляет больше бензина, чем инжекторный аналог. Причем излишнее потребление топлива не переходит в дополнительную мощность. Топливо не догорает и выбрасывается в атмосферу;
  2. Карбюратор не любит перепадов температур. Он чувствителен и к повышенной, и к пониженной температуре окружающей среды. Зимой его детали примерзают друг к другу. Это происходит из-за образования внутри него конденсата;
  3. Низкая экологичность.

Как отличить инжекторный автомобиль от карбюраторного

Если вы знаете, как выглядит карбюратор, то вам достаточно открыть капот и посмотреть под него. Но если вы не имеете о нем представления, то, чтобы его определить, вам помогут ряд признаков:

  • новый автомобиль, продающийся в автосалоне, – 100% инжекторный;
  • посмотрите на шильдик в задней части автомобиля – например, там написано BMW 525i. Вот эта «i» и есть обозначение инжекторного авто;
  •  год выпуска автомобиля. На иностранные авто инжекторы начали устанавливать в середине 90-ых годов, на отечественные – с начала 2000-ых;
  • корпус воздушного фильтра установлен прямо на карбюраторе. Если вы видите воздуховоды (например, пластиковые гофрированные короба черного цвета), то, скорее всего, перед вами инжекторная машина;
  • если индикаторы, которые загораются на приборной панели при повороте ключа, содержат сигнализатор «Check Engine», то машина перед вами инжекторная.

Подводя итог

  1. В карбюраторных системах топливная смесь поступает в двигатель путем ее всасывания, в инжекторных – подается под давлением через форсунки методом впрыска.
  2. Карбюраторная система нестабильная, а инжектор более предсказуем.
  3. Инжектор одинаково хорошо работает в любую погоду, карбюратор не любит перепадов температуры, сильных морозов.
  4. Инжектор не так сильно загрязняет атмосферу.
  5. Инжекторный автомобиль быстрее ускоряется.
  6. Карбюратор потребляет больше топлива до 40%.
  7. Инжектор редко ломается, но его ремонт дороже обходится.
  8. Карбюратор не так требователен к качеству бензина.

Система питания

Система питания двигателя служит для приготовления горючей смеси из паров топлива и воздуха в определенных пропорциях, подачи ее в цилиндры двигателя и отвода из них отработавших газов. За подачу топлива в цилиндры в современных автомобилях отвечает система впрыска топлива, основными элементами, которой являются форсунки.

Устройство системы питания

В систему питания карбюраторного двигателя входят: топлив­ный бак, фильтр-отстойник, топливопроводы, топливный насос, фильтр тонкой очистки топлива, карбюратор, воздухоочиститель, впускной трубо­провод, выпускной трубопровод, приемные трубы, глушитель, приборы контроля уровня топлива.

Работа система питания

При работе двигателя топливный насос засасывает топливо из топлив­ного бака и через фильтры подает в поплавковую камеру карбюратора. При такте впуска в цилиндре двигателя создается разрежение и воздух, пройдя через воздухоочиститель, поступает в карбюратор, где смешивается с парами топлива и в виде горючей смеси подается в цилиндр, и там, сме­шиваясь с остатками отработавших газов, образуется рабочая смесь. После совершения рабочего хода, отработавшие газы выталкиваются поршнем в выпускной трубопровод и по приемным трубам через глушитель в окру­жающую среду.

Системы питания и выпуска отработавших газов двигателя автомобиля:

1 — канал подвода воздуха к воздушному фильтру; 2 — воздушный фильтр; 3 — карбюратор; 4 — рукоятка ручного управления воздушной заслонкой; 5 — рукоятка ручного управления дроссельны­ми заслонками; 6 — педаль управления дроссельными заслонками; 7 — топливо проводы; 8 — фильтр-отстойник; 9 — глушитель; 10 — приемные трубы; 11 — выпускной трубопровод; 12 — фильтр тонкой очистки топлива; 13 — топливный насос; 14 — указатель уровня топлива; 15 — датчик указателя уровня топлива; 16 — топливный бак; 17— крышка горловины топливного бака; 18 — кран; 19 - выпускная труба глушителя.

Топливо. В качестве топлива в карбюраторных двигателях обычно ис­пользуют бензин, который получают в результате переработки нефти.

Требования, предъявляемые к бензинам:

• быстрое образование топливовоздушной смеси;

• скорость сгорания не более 40 м/с;

• минимальное коррозирующее воздействие на детали двигателя;

• минимальное отложение смолистых веществ в элементах системы питания;

• минимальное вредное воздействие на организм человека и окружаю­щую среду;

• способность длительное время сохранять свои свойства.

Автомобильные бензины в зависимости от количества легко испаряющихся фракций подразделяют на летние и зимние.

 Для автомобильных карбюраторных двигателей выпускают бензины А-76, АИ-92, АИ-98 и др. Буква «А» обозначает, что бензин автомобильный, цифра — наименьшее октановое число, характеризующее детонационную стойкость бензина. Наибольшей детонационной стойкостью обладает изооктан, (его стой­кость принимают за 100), наименьшей -  н-гептан (его стойкость равна 0). Октановое число, характеризующее детонационную стойкость бензи­на, — процентное содержание изооктана в такой смеси с н-гептаном, ко­торая по детонационной стойкости равноценна испытуемому топливу. Например, исследуемое топливо детонирует так же, как смесь 76 % изо­октана и 24 % н-гептана. Октановое число данного топлива равно 76. Октановое число определяется двумя методами: моторным и исследова­тельским. При определении октанового числа вторым методом в марки­ровке бензина добавляется буква «И». Октановое число определяет до­пустимую степень сжатия.

 

 

Топливный бак. На автомобиле устанавливают один или несколько топливных баков. Объем топливного бака должен обеспечивать 400—600 км пробега автомобиля без заправки. Топливный бак  состоит из двух сварных половинок, выполненных штамповкой из освинцованной стали. Внутри бака имеются перегородки, придающие жесткость конструкции и препятствующие образованию волн в топливе. В верхней части бака приварена наливная горловина, которая закрывается пробкой. Иногда для удобства заправки бака топливом используют выдвижную горловину с сетчатым фильтром. На верхней стенке бака крепится датчик указателя уровня топлива и топливо заборная трубка с сетчатым фильтром. В днище бака имеется резьбовое отверстие для слива отстоя и удаления механических примесей, которое закрыто пробкой. Наливную горловину бака закрывают плотно пробкой, в корпусе которой имеется два клапана — паровой и воздушный. Паровой клапан при повышении давления в баке открывается и выводит пар в окружающую среду. Воздушный клапан открывается, когда идет расход топлива и создается разрежение.

 

Топливные фильтры. Для очистки топлива от механических примесей применяют фильтры грубой и тонкой очистки. Фильтр-отстойник грубой очистки отделяет топливо от воды и крупных механических примесей. Фильтр-отстойник  состоит из корпуса, отстойника и фильтрующего элемента, который собран из пластин толщиной 0,14 мм. На пластинах имеются отверстия и выступы высотой 0,05 мм. Пакет пластин установлен на стержень и пружиной поджимается к корпусу. В собранном состоянии между пластинами имеются щели, через которые проходит топливо. Крупные механические примеси и вода собираются на дне отстойника и через отверстие пробки в днище периодически удаляются.

Топливный бак (а) и работа выпускного (б) и впускного (в) клапанов: 1— фильтр-отстойник; 2 — кронштейн крепления бака; 3 — хомут крепления бака; 4 — датчик указателя уровня топлива в баке; 5 — топливный бак; 6 — кран; 7 — пробка бака; 8 — горловина; 9 — облицовка пробки; 10 — резиновая прокладка; П — корпус пробки; 12 — выпускной клапан; 13 — пружина выпускного клапана; 14 — впускной клапан; 15 — рычаг пробки бака; 16 -пружина впускного клапана.

Фильтр-отстойник: 1 — топливо провод к топливному насосу; 2 — прокладка корпуса; 3 — корпус-крышка; 4 — топливо провод от топливного бака; 5 — прокладка фильтрующего элемента; 6 — фильтрующий элемент; 7— стойка; 8 — отстойник; 9— сливная пробка; 10 — стержень фильтрующего элемента; 11 — пружина; 12 — пластина фильтрующего элемента; 13 — отверстие в пластине для прохода очищенного топлива; 14 — выступы на пластине; 15 — отверстие в пластине для стоек; 16 — заглушка; 17 — болт крепления корпуса-крышки.

Фильтры тонкой очистки топлива с фильтрующими элементами: a — сетчатый; б — керамический; 1— корпус; 2— входное отверстие; 3— прокладка; 4— фильтрующий элемент; 5— съемный стакан-отстойник; 6 — пружина; 7— винт креплении стакана; 8— канал для отвода топлива.

Фильтр тонкой очистки. Для очистки топлива от мелких механических примесей применяют фильтры тонкой очистки , которые состоят из корпуса, стакана-отстойника и фильтрующего сетчатого или керамического элемента. Керамический фильтрующий элемент — пористый материал, обеспечивающий лабиринтное движение топлива. Фильтр удерживается скобой и винтом.
Топливо проводы соединяют приборы топливной системы и изготовляются из медных, латунных и стальных трубок.

Топливный насос системы питания

Топливный насос служит для подачи топлива через фильтры из бака в поплавковую камеру карбюратора. Применяют насосы диафрагменного типа с приводом от эксцентрика распределительного вала. Насос  состоит из корпуса, в котором крепится привод — двуплечий рычаг с пружиной, головки, где размещены впускные и нагнетательные клапаны с пружинами, и крышки. Между корпусом и головкой зажаты края диафрагмы. Шток диафрагмы к рычагу привода крепится шарнирно, что позволяет диафрагме работать с переменным ходом.
Когда двуплечий рычаг (коромысло) опускает диафрагму вниз, в полости над диафрагмой создается разрежение, за счет чего открывается впускной клапан и наддиафрагменная полость заполняется топливом. При сбегании рычага (толкателя) с эксцентрика диафрагма поднимается вверх под действием возвратной пружины. Над диафрагмой давление топлива повышается, впускной клапан закрывается, открывается нагнетательный клапан и топливо поступает через фильтр тонкой очистки в поплавковую камеру карбюратора. При смене фильтров поплавковую камеру заполняют топливом с помощью устройства для ручной подкачки. В случае выхода диафрагмы из строя (трещина, прорыв и т. п.) топливо поступает в нижнюю часть корпуса и вытекает через контрольное отверстие.

Воздушный фильтр служит для очистки воздуха, поступающего в карбюратор, от пыли. Пыль содержит мельчайшие кристаллы кварца, который, оседая на смазанных поверхностях деталей, вызывает их изнашивание.

Требования, предъявляемые к фильтрам:


• эффективность очистки воздуха от пыли;
• малое гидравлическое сопротивление;
• достаточная пылеемкость:
• надежность;
• удобство в обслуживании;
• технологичность конструкции.


По способу очистки воздуха фильтры делятся на инерционно-масляные и сухие.
Инерционно-масляный фильтр состоит из корпуса с масляной ванной, крышки, воздухозаборника и фильтрующего элемента из синтетического материала.
При работе двигателя воздух, проходя через кольцевую щель внутри корпуса и, соприкасаясь с поверхностью масла, резко изменяет направление движения. Вследствие этого крупные частицы пыли, находящиеся в воздухе, прилипают к поверхности масла. Далее воздух проходит через фильтрующий элемент, очищается от мелких частиц пыли и поступает в карбюратор. Таким образом, воздух проходит двухступенчатую очистку. При засорении фильтр промывают.
Воздушный фильтр сухого типа состоит из корпуса, крышки, воздухозаборника и фильтрующего элемента из пористого картона. При необходимости фильтрующий элемент меняют.

Преимущества и недостатки Асинхронный двигатель

Асинхронный двигатель:

Почти 70% машин, используемых в настоящее время в промышленности, - это трехфазные асинхронные двигатели. Он работает по принципу индукции, когда электромагнитное поле (ЭДС) индуцируется в проводниках ротора, когда вращающееся магнитное поле статора разрезает неподвижные проводники ротора. Поскольку переменный ток используется в генерации, асинхронные двигатели для передачи и распределения занимают значительное место в промышленных приводах и не исключают двигателей постоянного тока, которые ранее использовались в промышленных приложениях.Асинхронные двигатели бывают двух типов по конструкции: асинхронные двигатели с короткозамкнутым ротором и асинхронные двигатели с контактным кольцом. Асинхронные двигатели с короткозамкнутым ротором широко используются в двигателях и приводах. Некоторые из преимуществ асинхронных двигателей по сравнению с двигателями постоянного тока и синхронными двигателями. Также ниже приведены недостатки асинхронных двигателей по сравнению с другими двигателями:

Преимущества асинхронного двигателя

:

  • Асинхронные двигатели имеют простую и прочную конструкцию.Преимущество асинхронных двигателей в том, что они надежны и могут работать в любых условиях окружающей среды.
  • Асинхронные двигатели дешевле из-за отсутствия щеток, коммутаторов и контактных колец
  • В отличие от двигателей постоянного тока и синхронных двигателей, они не требуют обслуживания из-за отсутствия щеток, коммутаторов и контактных колец.
  • Асинхронные двигатели могут эксплуатироваться в загрязненных и взрывоопасных средах, так как они не имеют щеток, которые могут вызвать искрение
  • Трехфазные асинхронные двигатели
  • будут иметь самозапускающийся момент в отличие от синхронных двигателей, поэтому в отличие от синхронного двигателя не используются методы пуска.Однако однофазные асинхронные двигатели не имеют самозапуска и вращаются с использованием некоторых вспомогательных устройств.

Эти преимущества асинхронных двигателей делают их более заметными в промышленных и бытовых применениях.

Асинхронный двигатель Недостатки:

Некоторые из недостатков асинхронных двигателей по сравнению с двигателями постоянного тока и синхронными двигателями:

  • Трехфазные асинхронные двигатели имеют низкий пусковой крутящий момент и высокие токи включения.Поэтому эти двигатели не используются широко для приложений, требующих высоких пусковых моментов, таких как тяговые системы. Асинхронный двигатель с короткозамкнутым ротором имеет низкий пусковой момент. Пусковой крутящий момент в случае асинхронного двигателя с контактным кольцом сравнительно лучше из-за наличия внешнего резистора в цепи ротора во время запуска. Другим важным недостатком асинхронного двигателя является то, что он потребляет большие пусковые токи, вызывая резкое кратковременное падение напряжения во время запуска машины. Высокие пусковые токи можно уменьшить, используя некоторые методы пуска в асинхронном двигателе
  • .
  • Асинхронные двигатели всегда работают с отстающим коэффициентом мощности, а в условиях небольшой нагрузки они работают с очень худшим коэффициентом мощности (0.От 2 до 0,4). К недостаткам плохой мощности относятся увеличение потерь I 2 R в системе, снижение КПД системы. Следовательно, рядом с этими двигателями следует размещать некоторое оборудование для коррекции коэффициента мощности, такое как батареи статических конденсаторов, чтобы передавать им реактивную мощность.
  • Один из основных недостатков асинхронных двигателей заключается в том, что регулирование скорости асинхронных двигателей затруднено. Следовательно, для точного регулирования скорости вместо асинхронных двигателей используются двигатели постоянного тока.Благодаря прогрессу в силовой электронике, преобразователи частоты с асинхронными двигателями теперь используются в промышленности для регулирования скорости.

Вот некоторые из недостатков асинхронных двигателей.

.

Преимущества и недостатки питания переменного и постоянного тока

Первая электроэнергетическая система была построена в Нью-Йорке в 1882 году. Электроэнергия постоянного тока вырабатывалась парогенератором, снабжающим электроэнергией 59 потребителей. В течение десятилетия во всем мире было разработано множество небольших энергосистем, использующих энергию постоянного тока.

Несмотря на первоначальный широкий разброс мощности постоянного тока, у них есть определенные ограничения: мощность постоянного тока должна генерироваться и передаваться на короткие расстояния, для передачи на большие расстояния I 2 R потери и падения напряжения в линиях неприемлемы для генерации постоянного тока мощность.Следовательно, возникла необходимость в преобразовании уровней напряжения.

С развитием трансформаторов и передач переменного тока проложили важный путь для выработки электроэнергии. Затем возник спор по поводу того, следует ли стандартизировать электроэнергетику с помощью переменного или постоянного тока.

Мощность переменного тока победила мощность постоянного тока благодаря некоторым преимуществам

  • В переменный ток уровни напряжения могут быть преобразованы, таким образом, электрическая мощность может генерироваться при низком напряжении и повышаться для передачи на большие расстояния, чтобы уменьшить потери I 2 R, и может быть понижена в конце распределения.
  • Генераторы переменного тока
  • намного проще генераторов постоянного тока.
  • Двигатели переменного тока
  • намного дешевле и проще по конструкции по сравнению с двигателями постоянного тока. (Асинхронные двигатели имеют простую и прочную конструкцию и требуют меньшего обслуживания, чем двигатели постоянного тока)

По вышеуказанным причинам мощность переменного тока исключает мощность постоянного тока для генерации, передачи и распределения.

Недостаток переменного тока:

Однако следует помнить, что мощность переменного тока имеет некоторые недостатки, такие как

  • Помехи соседним линиям связи
  • Гармоники в энергосистеме
  • Потери, такие как скин-эффект и потеря короны
.Недостатки гармоник

в системе питания

Источники гармоник:

Несколько источников гармонических токов, которые могут быть обнаружены в электрических распределительных сетях, перечислены ниже:

  • Электроприводы с регулируемой скоростью
  • Выпрямители
  • Дуговые печи
  • Оружие
  • Источники бесперебойного питания
  • Импульсные источники питания
  • Компактные люминесцентные лампы
  • Электронные балласты

Недостатки гармоник:

Гармоники ухудшают работу энергосистемы.Некоторые из недостатков гармоник в распределенной сети питания перечислены ниже:

  • Гармоники, протекающие в распределительной сети, ухудшают качество подачи электроэнергии. Может иметь несколько негативных последствий для работы энергосистемы
  • .
  • Повышенные потери в системе распределения из-за увеличения эффективного действующего тока
  • Перегрузка в нейтральных проводниках из-за кумулятивного увеличения третьей гармоники, создаваемой однофазными нагрузками
  • Перегрузки, вибрация и преждевременное старение генераторов, трансформаторов и двигателей, а также повышение уровня шума
  • Перегрузки и преждевременное старение конденсаторов коррекции коэффициента мощности
  • Искажение напряжения питания, которое может нарушить работу чувствительных нагрузок
  • Нарушения в сетях связи и телефонных линиях
  • Резонанс между индуктивностью питания и емкостью конденсаторов коррекции коэффициента мощности
.

Преимущества и недостатки системы единиц

В анализе энергетической системы, за единицу система (о.е.) используется, чтобы выразить физическую переменную в качестве фракции основания или опорного значения. Per Unit (pu) обычно используется для расчета напряжения, тока, импеданса и мощности в потоке мощности и связанных расчетов.

на единицу (о.у.) Преимущества системы:

  • Схемы упрощенные
  • Напряжения имеют одинаковый диапазон на единицу во всех частях системы от системы сверхвысокого напряжения до распределения и использования
  • При выражении в системе единиц измерения параметры устройства обычно находятся в узком диапазоне независимо от размера устройства.Например, реактивные сопротивления генератора на единицу одинаковы для машин 100 МВА и 1000 МВА. Это облегчает проверку данных и ручные вычисления.
  • Для цепей, соединенных трансформаторами, особенно подходит единичная система. При выборе подходящей базовой кВ для цепей реактивное сопротивление на единицу остается неизменным по отношению к любой стороне трансформатора. Следовательно, на диаграмме реактивного сопротивления можно соединить различные цепи.
  • Этот метод идеален для исключения идеальных трансформаторов в качестве компонентов схемы, поскольку типичная энергосистема содержит сотни, если не тысячи трансформаторов, и это нетривиальная экономия.
  • Коэффициент Sqrt (3) в расчетах трехфазной цепи исключен

на единицу (о.у.) недостатки системы:

  • Для линий электропередачи - значение импеданса и проводимости в физических единицах (например, Ом / км), которые имеют одинаковую величину независимо от уровня напряжения или номинального значения в МВА.
  • Эквивалентные схемы компонентов изменены, делая их несколько более абстрактными.Иногда фазовые сдвиги, которые четко представлены в немасштабированных схемах, покрываются лаком в системе на единицу
.

Преимущества и недостатки автоматизации

Автоматизация «хорошая» или «плохая»? Есть аргументы с обеих сторон этого вопроса. С одной стороны, стоимость производства на единицу продукции обычно ниже, с другой стороны, часто говорят, что автоматизация забирает рабочие места у людей. Следующее взято из первой главы моей книги:

Люди создают вещи на протяжении многих тысяч лет. Первоначально большая часть продукции производилась индивидуально по мере необходимости; если инструмент требовался, его вылепляли вручную и, в свою очередь, использовали для изготовления дополнительных инструментов.Со временем были разработаны более сложные методы, помогающие людям выполнять задачи изготовления и производства. Технология металлообработки, ткацкие станки, мельницы с водяным приводом и разработка паровых и бензиновых двигателей - все это способствовало расширению возможностей производства различных продуктов, но, как правило, вещи по-прежнему производились мастерами, владеющими различными технологиями. Только после промышленной революции и повсеместного использования электроэнергии и механизмов массовое производство продукции стало обычным явлением.

Некоторые недостатки автоматизации:

• Технологические ограничения. Современные технологии не могут автоматизировать все желаемые задачи. Некоторые задачи не могут быть легко автоматизированы, например, производство или сборка продуктов с несовместимыми размерами компонентов или в задачах, где требуется ловкость рук. Есть некоторые вещи, которые лучше оставить на произвол судьбы и манипулировать ими.

Экономические пределы. Некоторые задачи будут стоить больше для автоматизации, чем для выполнения вручную.Автоматизация обычно лучше всего подходит для повторяемых, последовательных и больших объемов процессов.

• Непредсказуемые затраты на разработку. Затраты на исследования и разработки для автоматизации процесса трудно предсказать точно заранее. Поскольку эти затраты могут иметь большое влияние на прибыльность, можно завершить автоматизацию процесса только для того, чтобы обнаружить, что это не дает экономической выгоды. Однако с появлением и продолжающимся ростом различных типов производственных линий можно делать более точные оценки на основе предыдущих проектов.

Первоначальные затраты относительно высоки. Автоматизация нового продукта или строительство нового завода требует огромных начальных инвестиций по сравнению с удельной стоимостью продукта. Даже оборудование, затраты на разработку которого уже окупились, стоит дорого с точки зрения оборудования и рабочей силы. Стоимость может быть непомерно высокой для производственных линий по индивидуальному заказу, где необходимо разрабатывать манипуляторы и инструменты.

• Для обслуживания и поддержания системы автоматизации в надлежащем рабочем состоянии часто требуется квалифицированный отдел технического обслуживания.Неспособность поддерживать систему автоматизации в конечном итоге приведет к потере производства и / или производству некачественных деталей.

Несколько преимуществ автоматизации:

Замена человека-оператора в задачах, связанных с тяжелой физической или монотонной работой.

Замена людей в задачах, выполняемых в опасных средах, таких как экстремальные температуры или радиоактивная и токсичная атмосфера.

Упрощение задач, выходящих за рамки человеческих возможностей.Примерами этого являются работа с тяжелыми или большими грузами, манипулирование крошечными предметами или требование производить продукты очень быстро или медленно.

Производство часто происходит быстрее, а затраты на рабочую силу в расчете на один продукт ниже, чем при аналогичных ручных операциях.

Системы автоматизации могут легко включать проверки качества и проверки, чтобы уменьшить количество деталей, выходящих за допустимые пределы, при этом обеспечивая статистический контроль процесса, что позволит получать более согласованный и однородный продукт.

Улучшение экономики. Автоматизация может служить катализатором улучшения экономики предприятий или общества. Например, валовой национальный доход и уровень жизни в Германии и Японии резко повысились в 20-м веке, во многом благодаря автоматизации производства оружия, автомобилей, текстиля и других товаров на экспорт.

Системы автоматизации не болеют!

В целом преимущества перевешивают недостатки.Можно с уверенностью сказать, что страны, принявшие автоматизацию, имеют более высокий уровень жизни, чем страны, которые этого не сделали. В то же время часто высказывается опасение, что автоматизация задач забирает рабочие места у людей, которые раньше строили вещи вручную. Независимо от социальных последствий, нет сомнений в том, что продуктивность увеличивается при правильном применении методов автоматизации.

Как вы думаете? Автоматизация «хорошо» или «плохо»?

* Прочтите следующий пост от 6 июня 2016 г.

.

Преимущества и недостатки передачи переменного и постоянного тока

Передача и распределение

Режимы передачи и распределения мощности переменного и постоянного тока имеют как преимущества, так и недостатки:

  • DC требует только двух проводов для передачи, и можно передавать мощность только через один провод, используя землю в качестве обратного пути. Таким образом сохраняется много меди
  • При передаче постоянного тока не будет проблем с индуктивностью, емкостью, смещением фаз и скачками напряжения
  • Из-за скин-эффекта в системе переменного тока ток проходит только через поверхность проводника.С другой стороны, система постоянного тока не будет иметь скин-эффекта. Следовательно, весь проводник будет использоваться для переноса проводника. Поэтому размер проводника уменьшается при постоянном токе при той же допустимой нагрузке по току по сравнению с системой переменного тока
  • .
  • Потенциальное напряжение на изоляторе в случае системы постоянного тока в 1 / (2 1/2 ) раз больше, чем в системе переменного тока для того же рабочего напряжения. Следовательно, для того же рабочего напряжения требуется меньше изоляции постоянного тока по сравнению с системой переменного тока
  • .
  • Зарядные токи, которые способствуют постоянным потерям даже при отсутствии нагрузки, устранены в системе постоянного тока по сравнению с системой переменного тока
  • Линия постоянного тока имеет меньшие потери на коронный разряд по сравнению с системой переменного тока и меньшие помехи в цепях связи.
  • Так как индуктивность отсутствует, падение напряжения в линии передачи постоянного тока из-за индуктивного сопротивления не существует. Следовательно, такая же нагрузка и регулировка конечного напряжения на выходе системы постоянного тока лучше, чем в системе переменного тока
  • .
  • Для передачи на большие расстояния стабилизатор не требуется
  • Поскольку понятие коэффициента мощности отсутствует в системах постоянного тока, нет необходимости в оборудовании коррекции коэффициента мощности в энергосистеме
  • Единственная трудность в системе постоянного тока состоит в том, чтобы получить высокое напряжение, необходимое для передачи, поскольку электрическая мощность, не генерируемая при высоких напряжениях, ни напряжение постоянного тока не могут быть увеличены, тогда как система переменного тока может быть повышена и может быть понижена в зависимости от требований
  • Другим преимуществом системы переменного тока является то, что электрическая энергия может быть легко произведена при высоком напряжении, а обслуживание подстанции переменного тока дешевле и проще
  • Распределение системы переменного тока, несомненно, превосходит распределение системы постоянного тока, так как в системе переменного тока регулирование напряжения легко осуществляется с помощью трансформаторов
.

Смотрите также